Устройство современного двигателя

Содержание:

Бензиновый и дизельный моторы: в чем принципиальные отличия?

В чем главное отличие бензинового двигателя от дизельного? Речь идет о принципе зажигания. Бензиновые двигатели имеют искровое зажигание, дизель является самоходным. Что означают эти слова?

Бензиновые двигатели для взрыва в цилиндре используют искру, генерируемую на свече зажигания. В дизельных двигателях всё совсем иначе. В дизельном моторе воздух в цилиндре сжимается поршнем гораздо сильнее. Настолько, что внутри создается высокая температура, достаточная для взрыва смеси в цилиндре без искры. Бензин не возгорается из-за большого давления, соляра (дизельное топливо), наоборот, не горит при нормальных условиях от обычной искры.

Двигатели также различаются по расположению и количеству цилиндров. В Европе наиболее популярными являются рядные двигатели — как можно заключить из названия, цилиндры, в которых движутся поршни, в них расположены в ряд. Рядный четырехцилиндровый двигатель будет отмечается символом R4, шестицилиндровый R6 и т. д. Теперь представьте, что Lamborghini собирается смонтировать большой 12-цилиндровый двигатель под капотом своей модели. Если бы производитель хотел установить все цилиндры в один ряд, двигатель занял бы много места. Таким образом, было изобретено другое решение — разветвленное расположение цилиндров в два ряда, под углом 60, 90 и даже 180 градусов (оппозитный мотор). Все двигатели этого типа обозначены буквой V, в данном случае это будет двигатель V12. Однако более популярными являются установки V6 и V8. Такие автомобили изготавливались в середине прошлого века в США, после финансового кризиса их посчитали недостаточно оправданными.

Эти «демонические», действительно мощные, производительные моторы, встречаются реже, их можно обнаружить, чаще всего, в Subaru или Porsche. Здесь поршни расположены с обеих сторон коленчатого вала, лицом друг к другу, что делает весь двигатель, по сравнению с другими, очень плоским, но не менее объемным.

Рядный двигатель

Системы двигателя

Вышеописанное представляет собой БЦ (блок цилиндров) и КШМ (кривошипно-шатунный механизм). Помимо этого современный ДВС состоит и из других вспомогательных систем, которые для удобства восприятия группируют следующим образом:

  1. ГРМ (механизм регулировки фаз газораспределения);
  2. Система смазки;
  3. Система охлаждения;
  4. Система подачи топлива;
  5. Выхлопная система.

ГРМ — газораспределительный механизм

Чтобы в цилиндр поступало нужное количество топлива и воздуха, а продукты сгорания вовремя удалялись из рабочей камеры, в ДВС предусмотрен механизм, называемый газораспределительным. Он отвечает за открытие и закрытие впускных и выпускных клапанов, через которые в цилиндры поступает топливо-воздушная горючая смесь и удаляются выхлопные газы. К деталям ГРМ относятся:

  • Распределительный вал;
  • Впускные и выпускные клапаны с пружинами и направляющими втулками;
  • Детали привода клапанов;
  • Элементы привода ГРМ.

ГРМ приводится в действие от коленчатого вала двигателя автомобиля. С помощью цепи или ремня вращение передается на распределительный вал, который посредством кулачков или коромысел через толкатели нажимает на впускной или выпускной клапан и по очереди открывает и закрывает их.

Система смазки

В любом моторе есть множество трущихся деталей, которые необходимо постоянно смазывать, чтобы уменьшить потери мощности на трение и избежать повышенного износа и заклинивания. Для этого существует система смазки. Попутно с ее помощью решается еще несколько задач: защита деталей двигателя внутреннего сгорания от коррозии, дополнительное охлаждение деталей мотора, а также удаление продуктов износа из мест соприкосновения трущихся частей. Систему смазки двигателя автомобиля образуют:

  • Масляный картер (поддон);
  • Насос подачи масла;
  • Масляный фильтр с редукционным клапаном;
  • Маслопроводы;
  • Масляный щуп (индикатор уровня масла);
  • Указатель давления в системе;
  • Маслоналивная горловина.

Система охлаждения

Во время работы мотора его детали соприкасаются с раскаленными газами, которые образуются при сгорании топливо-воздушной смеси. Чтобы детали двигателя внутреннего сгорания не разрушались из-за чрезмерного расширения при нагреве, их необходимо охлаждать. Охладить мотор автомобиля можно с помощью воздуха или жидкости. Современные моторы имеют, как правило, жидкостную схему охлаждения, которую образуют следующие части:

  • Рубашка охлаждения двигателя;
  • Насос (помпа);
  • Термостат;
  • Радиатор;
  • Вентилятор;
  • Расширительный бачок.

Система подачи топлива

Система питания для двигателей внутреннего сгорания с воспламенением от искры и от сжатия отличаются друг от друга, хотя и имеют ряд общих элементов. Общими являются:

  • Топливный бак;
  • Датчик уровня топлива;
  • Фильтры очистки топлива — грубой и тонкой;
  • Топливные трубопроводы;
  • Впускной коллектор;
  • Воздушные патрубки;
  • Воздушный фильтр.

В обеих системах имеются топливные насосы, топливные рампы, форсунки подачи топлива, сам принцип подачи одинаков: топливо из бака с помощью насоса через фильтры подается в топливную рампу, из которой попадает в форсунки. Но если в большинстве бензиновых двигателей внутреннего сгорания форсунки подают его во впускной коллектор мотора автомобиля, то в дизельных оно подается непосредственно в цилиндр, и уже там смешивается с воздухом.

Выхлопная система

Система выхлопа предназначена для отвода отработанных газов из цилиндров двигателя автомобиля. Основные детали, ее составляющие:

  • Выпускной коллектор;
  • Приемная труба глушителя;
  • Резонатор;
  • Глушитель;
  • Выхлопная труба.

В современных двигателях внутреннего сгорания выхлопная конструкция дополнена устройствами нейтрализации вредных выбросов. Она состоит из каталитического нейтрализатора и датчиков, сообщающихся с блоком управления двигателем. Выхлопные газы из выпускного коллектора через приемную трубу попадают в каталитический нейтрализатор, затем через резонатор в глушитель. Далее через выхлопную трубу они выбрасываются в атмосферу.

Примечания

  1. ↑ . bigenc.ru. Дата обращения: 15 июля 2019.
  2. . lektsii.org. Дата обращения: 22 июля 2019.
  3. . bigenc.ru. Дата обращения: 25 июля 2019.
  4. . azbukadvs.ru. Дата обращения: 25 июля 2019.
  5. . carsweek.ru. Дата обращения: 22 июля 2019.
  6. .
  7. . Autonews. Дата обращения: 10 июня 2020.
  8. . wiki.zr.ru. Дата обращения: 18 апреля 2020.
  9. . vdvizhke.ru. Дата обращения: 15 июля 2019.
  10. . Дата обращения: 25 июля 2019.
  11. . Studref. Дата обращения: 25 июля 2019.
  12. . wiki.zr.ru. Дата обращения: 11 февраля 2020.
  13. . stroy-technics.ru. Дата обращения: 11 февраля 2020.
  14. ↑ . www.science-education.ru. Дата обращения: 11 февраля 2020.
  15. . www.korabel.ru. Дата обращения: 11 февраля 2020.
  16. . mash-xxl.info. Дата обращения: 11 февраля 2020.
  17. . mash-xxl.info. Дата обращения: 11 февраля 2020.
  18. . StudFiles. Дата обращения: 11 января 2020.
  19. . Дата обращения: 25 июля 2019.
  20. . Портал «Европульс». Дата обращения: 28 декабря 2019.
  21. . www.barque.ru. Дата обращения: 18 июля 2019.

Toyota 1-AZ FE

В начале 2000-х годов компания Тойота выпустила на рынок линейку моторов AZ. Они стали отличной заменой двигателям серии S, которые массово изготавливались до этого времени и устанавливались под капоты автомобилей известных зарубежных марок.

Лучшим представителем линейки агрегатов AZ стала модель 1AZ-FE. Специалисты быстро оценили ее возможности и назвали хорошей альтернативой двигателя для среднего класса машин 3S-FE.

Невзирая на то, что мотор 1-AZ FE признали надежным и долговечным, его установили на небольшое количество авто от компании Тойота:

  • Camry (Aurion) 2006-2009 гг;
  • РАВ4 и РАВ4 Евро с 2001-2006 гг;
  • Avensis Verso 2001-2009 гг.

Такие машины распространены в Азии и некоторых европейских странах. В России они практически не встречаются. Сегодня новые автомобили с 1-AZ FE от Toyota не выпускаются, но двигатели данной модели все равно производятся и продаются в качестве запчастей.

Электрический двигатель

Электрический двигатель по своим тяговым характеристикам идеально подходит для применения на автомобиле. Фактически он позволяет отказаться от таких узлов трансмиссии, как сцепление и коробка передач. Из следующей главы можно будет узнать описание работы одноцилиндрового двигателя как пример двигателя внутреннего сгорания.

Кроме этого, электромотор практически не оказывает пагубного воздействия на окружающую среду. А в одной из следующих глав можно будет узнать назначение и устройство газораспределительного механизма двигателя, для чего нужен ремень газораспределительного механизма.

Широкое применение таких двигателей в настоящий момент сдерживается только одним фактором. Питание электродвигателя осуществляется от аккумуляторных батарей, которые необходимо заряжать перед выездом. Современные технологии пока не позволяют создать достаточно ёмкий аккумулятор, который мог бы обеспечить автомобилю приемлемый запас электроэнергии.

Сейчас конструкторам удаётся создавать электромобили, способные проехать на одной зарядке 100-200 км. Более ёмкие аккумуляторные батареи получаются либо слишком дорогими, либо чересчур массивными.

Насколько хороша новинка и насколько она дороже обычной системы привода клапанов?

Разработчики утверждают, что система без распредвалов использует на 10% меньше энергии, чем традиционные решения привода. Эти проценты в стандартной схеме двигателя обычно уходят на преодоление трения, привод и работу всей верхней части «головы» мотора, то есть всех этих многочисленных систем. Эффективность использования такого двигателя как несложно догадаться будет на 10% лучше, но гораздо больший выигрыш станет очевидным при экологической проверке.

Двигатель может работать в четырех циклах: стандартный- Отто, сложный- Миллера и экономный-Аткинсона. Также двигатель способен воспроизводить цикл Хедмана с изменяемой степенью сжатия

Например, в двигателе с искровым зажиганием, (читайте, в бензиновом моторе) с установленным FreeValve можно смело снять каталитический нейтрализатор, а экономичность даже у мощного бензинового двигателя станет сродни дизельному варианту.

В результате полученный силовой агрегат станет дешевле эквивалентного дизельного мотора, говорят в FreeValve. На дизельные двигатели также могут быть установлены новомодные электронные приводы клапанов, что в теории должно чуть снизить расход мотора работающего на ДТ и серьезно повысить экологичность его выхлопа.

Стоимость новой технологии. Если взять в расчет науку экономику, то получается, что первые 10- 100 тыс. двигателей, построенных по этой технологии, будут стоить дороже обычных типов силовых агрегатов, но в конечном итоге, когда производство будет поставлено на промышленный поток и при достижении определённой «критической массы», стоимость новых типов моторов начнет постепенно снижаться и в итоге сравняется со стоимостью стандартного ДВС.

При этом такие моторы будут более эффективными, чем традиционные модели, будут меньше расходовать горючего при увеличении мощности и станут показывать гораздо более приемлемые показатели полки крутящего момента.

Номерные агрегаты

При заказе номерных агрегатов необходимо указывать признак UNIT. Мы поставляем номерные агрегаты со следующими документами:

  • — копия ГТД;
  • — счет-фактура и накладная на приобретенный товар.

Никакие другие документы на номерной агрегат не предоставляются. Полный текст документа о порядке регистрации транспортных средств — на сайте gai.ru.

Выдержка из документа о порядке регистрации транспортных средств:

(в ред. Приказов МВД РФ от 22.12.2003 N 1014, от 19.01.2005 N 26, с изм., внесенными решением Верховного Суда РФ от 10.10.2003 N ГКПИ 2003-635)

35. Для совершения регистрационных действий собственники или владельцы транспортных средств представляют:

  • а) заявление;
  • б) паспорт или иной заменяющий его документ, выданный в установленном порядке, удостоверяющий личность гражданина, обратившегося за совершением регистрационных действий;
  • в) документ, удостоверяющий полномочия гражданина представлять интересы собственника при совершении регистрационных действий;
  • г) документы об уплате платежей, установленных пунктом 13 настоящих Правил;(+ счет, счет-фактура)
  • д) регистрационный документ и (или) паспорт транспортного средства, если он выдавался;
  • е) транспортное средство, за исключением случаев его утилизации. При наличии обстоятельств, препятствующих представлению транспортных средств, допускается представление актов технического осмотра, выданных с соблюдением требований настоящих Правил подразделениями Госавтоинспекции по месту нахождения транспортных средств и заверенных главными государственными инспекторами безопасности дорожного движения субъектов Российской Федерации, районов, городов, округов и районов в городах или их заместителями, начальниками регистрационных подразделений или начальниками станций государственного технического осмотра Госавтоинспекции. Срок действия акта технического осмотра 20 суток;
  • ж) справку-счет, выданную торговой организацией или предпринимателем, либо заключенный в установленном порядке договор или иной документ, удостоверяющий право собственности на транспортное средство, номерной агрегат, в соответствии с законодательством Российской Федерации. К иным документам, удостоверяющим право собственности на транспортные средства, номерные агрегаты, могут относиться:
  • — документы, выдаваемые таможенными органами на транспортные средства, номерные агрегаты, ввезенные на территорию Российской Федерации;(копия ГТД)

— документы, выдаваемые органами социальной защиты населения о выделении транспортных средств инвалидам либо об изменении права собственности на такие транспортные средства в порядке, установленном законодательством Российской Федерации;

— решения судов, судебные приказы, постановления органов принудительного исполнения по исполнению судебных актов;
— документы (свидетельства) на высвободившиеся номерные агрегаты, выданные регистрационными подразделениями;
— выписки из передаточных актов (касающиеся транспортных средств) при слиянии юридических лиц, присоединении юридического лица к другому юридическому лицу или преобразовании юридического лица одного вида в юридическое лицо другого вида (изменении организационно-правовой формы);выписки из разделительного баланса (касающиеся транспортных средств) при разделении юридического лица либо при выделении из состава юридического лица одного или нескольких юридических лиц;
— договоры, свидетельства о праве на наследство и другие документы на право собственности, заключенные и (или) составленные в соответствии с законодательством или международными договорами Российской Федерации;
з) страховой полис обязательного страхования гражданской ответственности собственника транспортного средства или лица, владеющего транспортным средством на праве хозяйственного ведения или праве оперативного управления либо на ином законном основании (право аренды, доверенность на право управления транспортным средством, распоряжение соответствующего органа о передаче этому лицу транспортного средства и тому подобное) — в случаях регистрации, в том числе временной, и изменения регистрационных данных транспортных средств, когда обязанность по страхованию своей гражданской ответственности установлена федеральным законом;
и) регистрационные знаки транспортных средств или регистрационные знаки «ТРАНЗИТ», а также регистрационные документы и регистрационные номера государств регистрации транспортных средств, ввезенных на территорию Российской Федерации, в случаях, установленных настоящими Правилами.

Виды поршневых ДВС

Поршневые моторы классифицируются по типу используемого топлива:

  • бензиновые;
  • газовые;
  • дизельные.

Кроме того, двигатели отличаются системой зажигания. В установках, использующих принудительное зажигание, воспламенение топливной смеси производится устройствами, генерирующими искру. Их ещё называют свечами зажигания. В них периодически образуется электрическая дуга, которая и поджигает топливо в камере сгорания цилиндра. Работают свечи от электрического аккумулятора. Сложность представляет регулировка свечей. Необходимо отрегулировать свечи так, чтобы искра образовывалась точно в тот момент, когда смесь достигнет расчётного уровня сжатия.

Принудительное зажигание характерно только для бензиновых двигателей. Реже такая система применяется в двигателях, работающих на газе.

Топливная смесь может подаваться в цилиндры двумя способами: с помощью карбюратора или инжектора.

Поршневые агрегаты, использующие в качестве топлива солярку, называются дизельными и имеют другую систему воспламенения топлива в цилиндре. В дизельных установках смесь самопроизвольно воспламеняется в результате её сжатия поршнем. Отличительной особенностью дизельных двигателей является их «всеядность». Они способны работать на нескольких видах топлива. Дизели прекрасно функционируют, будучи заправлены другими горючими веществами. Например, керосином, мазутом или даже растительным маслом.

В зависимости от количества тактов рабочего цикла, различают двухтактные и четырёхтактные ДВС. Двухтактные двигатели обычно ставят на мотоциклы, мопеды или газонокосилки. Четырёхтактные моторы устанавливаются в современных автомобилях.

По пространственному расположению цилиндров ДВС тоже имеют свою классификацию.

Если цилиндры расположены на одной оси, то такие двигатели называются рядными. Обозначаются рядные моторы английским символом «R» с цифрой, указывающей на количество цилиндров.

Если цилиндры размещены под углом друг к другу, то такие агрегаты называют V-образными. Они гораздо компактнее других типов двигателей. Обычно угол между осями цилиндров составляет 120 градусов. Имеются модели V-образных моторов с другим углом между осями цилиндров.

Агрегаты, обозначаемые символом «Vr», имеют переходную конструкцию. Они обладают признаками и рядных, и V-образных двигателей.

При расположении цилиндров напротив друг друга, то есть под углом 180 градусов, двигатели называются оппозитными.

Основные параметры электродвигателя

Момент электродвигателя

Вращающий момент (синонимы: вращательный момент, крутящий момент, момент силы) — векторная физическая величина, равная произведению радиус вектора, проведенного от оси вращения к точке приложения силы, на вектор этой силы.

,

  • где M – вращающий момент, Нм,
  • F – сила, Н,
  • r – радиус-вектор, м

Справка: Номинальный вращающий момент Мном, Нм, определяют по формуле

,

  • где Pном – номинальная мощность двигателя, Вт,
  • nном — номинальная частота вращения, мин-1

Начальный пусковой момент — момент электродвигателя при пуске.

Справка: В английской системе мер сила измеряется в унция-сила (oz, ozf, ounce-force) или фунт-сила (lb, lbf, pound-force)

1 oz = 1/16 lb = 0,2780139 N (Н)1 lb = 4,448222 N (Н)

момент измеряется в унция-сила на дюйм (oz∙in) или фунт-сила на дюйм (lb∙in)

1 oz∙in = 0,007062 Nm (Нм)1 lb∙in = 0,112985 Nm (Нм)

Мощность электродвигателя

Мощность электродвигателя — это полезная механическая мощность на валу электродвигателя.

Мощность электродвигателя постоянного тока

Механическая мощность

Мощность — физическая величина, показывающая какую работу механизм совершает в единицу времени.

,

  • где P – мощность, Вт,
  • A – работа, Дж,
  • t — время, с

Работа — скалярная физическая величина, равная произведению проекции силы на направление F и пути s, проходимого точкой приложения силы .

,

где s – расстояние, м

Для вращательного движения

,

где – угол, рад,

,

где – углавая скорость, рад/с,

Таким образом можно вычислить значение механической мощности на валу вращающегося электродвигателя

Справка: Номинальное значение — значение параметра электротехнического изделия (устройства), указанное изготовителем, при котором оно должно работать, являющееся исходным для отсчета отклонений.

Коэффициент полезного действия электродвигателя

Коэффициент полезного действия (КПД) электродвигателя — характеристика эффективности машины в отношении преобразования электрической энергии в механическую.

,

  • где – коэффициент полезного действия электродвигателя,
  • P1 — подведенная мощность (электрическая), Вт,
  • P2 — полезная мощность (), Вт
  • При этом

потери в электродвигатели обусловлены:
электрическими потерями — в виде тепла в результате нагрева проводников с током;
магнитными потерями — потери на перемагничивание сердечника: потери на вихревые токи, на гистерезис и на магнитное последействие;
механическими потерями — потери на трение в подшипниках, на вентиляцию, на щетках (при их наличии);
дополнительными потерями — потери вызванные высшими гармониками магнитных полей, возникающих из-за зубчатого строения статора, ротора и наличия высших гармоник магнитодвижущей силы обмоток.

КПД электродвигателя может варьироваться от 10 до 99% в зависимости от типа и конструкции.

Международная электротехническая комиссия (International Electrotechnical Commission) определяет требования к эффективности электродвигателей. Согласно стандарту IEC 60034-31:2010 определено четыре класса эффективности для синхронных и асинхронных электродвигателей: IE1, IE2, IE3 и IE4.

где n — частота вращения электродвигателя, об/мин

Момент инерции ротора

Момент инерции — скалярная физическая величина, являющаяся мерой инертности тела во вращательном движении вокруг оси, равна сумме произведений масс материальных точек на квадраты их расстояний от оси

,

  • где J – момент инерции, кг∙м2,
  • m — масса, кг

Справка: В английской системе мер момент инерции измеряется в унция-сила-дюйм (oz∙in∙s2)

1 oz∙in∙s2 = 0,007062 kg∙m2 (кг∙м2)

Момент инерции связан с моментом силы следующим соотношением

,

где – угловое ускорение, с-2

,

Справка: Определение момента инерции вращающейся части электродвигателя описано в ГОСТ 11828-86

Номинальное напряжение

Номинальное напряжение (англ. rated voltage) — напряжение на которое спроектирована сеть или оборудование и к которому относят их рабочие характеристики .

Электрическая постоянная времени

Электрическая постоянная времени — это время, отсчитываемое с момента подачи постоянного напряжения на электродвигатель, за которое ток достигает уровня в 63,21% (1-1/e) от своего конечного значения.

,

где – постоянная времени, с

Механическая характеристика двигателя представляет собой графически выраженную зависимость частоты вращения вала от электромагнитного момента при неизменном напряжении питания.

Системы двигателя

Современный ДВС состоит и из других вспомогательных систем, которые для удобства восприятия группируют следующим образом:

  1. ГРМ (механизм регулировки фаз газораспределения);
  2. Система смазки;
  3. Система охлаждения;
  4. Система подачи топлива;
  5. Выхлопная система.

ГРМ — газораспределительный механизм

Чтобы в цилиндр поступало нужное количество топлива и воздуха, а продукты сгорания вовремя удалялись из рабочей камеры, в ДВС предусмотрен механизм, называемый газораспределительным. Он отвечает за открытие и закрытие впускных и выпускных клапанов, через которые в цилиндры поступает топливо-воздушная горючая смесь и удаляются выхлопные газы.

К деталям ГРМ относятся:

  • Распределительный вал;
  • Впускные и выпускные клапаны с пружинами и направляющими втулками;
  • Детали привода клапанов;
  • Элементы привода ГРМ.

ГРМ приводится в действие от коленчатого вала двигателя автомобиля. С помощью цепи или ремня вращение передается на распределительный вал, который посредством кулачков или коромысел через толкатели нажимает на впускной или выпускной клапан и по очереди открывает и закрывает их.

Система смазки

В любом моторе есть множество трущихся деталей, которые необходимо постоянно смазывать, чтобы уменьшить потери мощности на трение и избежать повышенного износа и заклинивания. Для этого существует система смазки. Попутно с ее помощью решается еще несколько задач: защита деталей двигателя внутреннего сгорания от коррозии, дополнительное охлаждение деталей мотора, а также удаление продуктов износа из мест соприкосновения трущихся частей. Систему смазки двигателя автомобиля образуют:

  • Масляный картер (поддон);
  • Насос подачи масла;
  • Масляный фильтр с редукционным клапаном;
  • Маслопроводы;
  • Масляный щуп (индикатор уровня масла);
  • Указатель давления в системе;
  • Маслоналивная горловина.

Система охлаждения

Во время работы мотора его детали соприкасаются с раскаленными газами, которые образуются при сгорании топливо-воздушной смеси. Чтобы детали двигателя внутреннего сгорания не разрушались из-за чрезмерного расширения при нагреве, их необходимо охлаждать. Охладить мотор автомобиля можно с помощью воздуха или жидкости. Современные моторы имеют, как правило, жидкостную схему охлаждения, которую образуют следующие части:

  • Рубашка охлаждения двигателя;
  • Насос (помпа);
  • Термостат;
  • Радиатор;
  • Вентилятор;
  • Расширительный бачок.

Система подачи топлива

Система питания для двигателей внутреннего сгорания с воспламенением от искры и от сжатия отличаются друг от друга, хотя и имеют ряд общих элементов. Общими являются:

  • Топливный бак;
  • Датчик уровня топлива;
  • Фильтры очистки топлива — грубой и тонкой;
  • Топливные трубопроводы;
  • Впускной коллектор;
  • Воздушные патрубки;
  • Воздушный фильтр.

В обеих системах имеются топливные насосы, топливные рампы, форсунки подачи топлива, сам принцип подачи одинаков: топливо из бака с помощью насоса через фильтры подается в топливную рампу, из которой попадает в форсунки. Но если в большинстве бензиновых двигателей внутреннего сгорания форсунки подают его во впускной коллектор мотора автомобиля, то в дизельных оно подается непосредственно в цилиндр, и уже там смешивается с воздухом.

Выхлопная система

Система выхлопа предназначена для отвода отработанных газов из цилиндров двигателя автомобиля. Основные детали, ее составляющие:

  • Выпускной коллектор;
  • Приемная труба глушителя;
  • Резонатор;
  • Глушитель;
  • Выхлопная труба.

В современных двигателях внутреннего сгорания выхлопная конструкция дополнена устройствами нейтрализации вредных выбросов. Она состоит из каталитического нейтрализатора и датчиков, сообщающихся с блоком управления двигателем. Выхлопные газы из выпускного коллектора через приемную трубу попадают в каталитический нейтрализатор, затем через резонатор в глушитель. Далее через выхлопную трубу они выбрасываются в атмосферу.

Важность моторного масла

Чтобы двигатель работал исправно, очень важно наличие в картере масла. Каждый из нас отлично знает, что, чем лучше скольжение, тем более плавным является движение (вспомните фигурное катание)

В принципе, там, где есть движение в двигателе, где одна деталь соприкасается с другой, туда и попадает масло. Его путь начинается с масляного поддона, который расположен под двигателем, масло всасывается специальным насосом, затем масляный насос вдавливает его в трубчатую сборку, которая направляет смазочный растовр в множество мест двигателя.

Представьте, что случилось бы, если бы в течение длительного времени все компоненты двигателя двигались «всухую»

Теперь вы, наверное, понимаете, почему так важно время от времени проверять уровень масла в двигателе

Двигатели в автомобилях Лада Веста Спорт

Топ среди топа. Единственным двигателем на Лада Веста Спорт стал форсированный до 145 л. с. 1.8-литровый силовой агрегат. Опять же, видна преемственность инженерной мысли, и это очень хорошо по нескольким причинам:

1. Производитель думает о покупателе, снижая затраты на производство силового агрегата, а значит, снижая отпускную стоимость для автомобиля.

2. Заложенный инженерами потенциал стандартного мотора 21179 велик. Плюс 23 «лошади» переживаются им без каких-либо потрясений, при условии, что в будущем АвтоВАЗ может замахнуться на 180-сильную вариацию, скорее всего, этого же мотора. А если учесть, что основа изначально взята от 1.6-литрового мотора, то получается, что все современные двигатели имеют колоссальный запас прочностных характеристик на уровне лучших зарубежных аналогов. И данные по пробегу в 200 тыс. километров без капремонта можно смело корректировать в сторону увеличения (при условии правильного и своевременного обслуживания).

В остальном 145 л. с., 187 Нм крутящего момента. С этим мотором «Спорт» разгоняется до 100 км/ч за 9.6 секунды.

Хотите знать плюсы и минусы двигателя на Lada Vesta Sport? Мы бы тоже этого желали, но, увы, они пока недоступны. Мало того что модель поступила в продажу лишь недавно, она еще и достаточно редкая. Только начинают появляться видео в сети Интернет с опытом эксплуатации Vesta Sport, а уж о ремонте форсированного двигателя и подавно неизвестно. Время еще не пришло.

Можем лишь предположить, что мотор будет иметь недочеты, аналогичные своей базовой версии.

Турбированные двигатели и «атмосферники»: главные отличия

Для начала немного истории и теории. В основу работы любого ДВС положен принцип сгорания топливно-воздушной смеси в закрытой камере. Как известно, чем больше воздуха удается подать в цилиндры, тем больше горючего получается сжечь за один цикл. От количества сгоревшего топлива будет напрямую зависеть количество высвобождающейся энергии, которая толкает поршни. В атмосферных моторах забор воздуха происходит благодаря образованию разрежения во впускном коллекторе. Другими словами, мотор буквально «засасывает» в себя наружный воздух на такте впуска самостоятельно, а объем поместившегося воздуха зависит от физического объема камеры сгорания.

Данное решение позволяет силовому агрегату развивать больше мощности без необходимости физически увеличивать рабочий объем камеры сгорания. Добавим, что системами нагнетания воздуха может быть как турбина (турбокомпрессор), так и механический компрессор. На практике это выглядит следующим образом. Для получения мощного мотора можно пойти двумя путями:
увеличить объем камеры сгорания и/или изготовить двигатель с большим количеством цилиндров; подать в цилиндры воздух под давлением, что исключает необходимость увеличивать камеру сгорания и количество таких камер;

С учетом того, что на каждый литр топлива требуется около 1м3 воздуха для эффективного сжигания смеси в ДВС, автопроизводители по всему миру долгое время шли по пути совершенствования атмосферных двигателей. Атмомоторы представляли собой максимально надежный вид силовых агрегатов. Поэтапно происходило увеличение степени сжатия, при этом двигатели стали более стойкими к детонации. Благодаря появлению синтетических моторных масел минимизировались потери на трение, инженеры научились изменять фазы газораспределения, внедрение электронных систем управления двигателем позволило добиться высокоточного впрыска горючего и т.д. В результате моторы от V6 до V12 с большим рабочим объемом долгое время являлись эталоном производительности.  Также не стоит забывать и о надежности, так как конструкция атмосферных двигателей всегда оставалась проверенным временем решением.

Стоит отметить, что значительной популяризации моторов с наддувом и быстрому внедрению подобных агрегатов в широкие массы долгое время препятствовала высокая стоимость автомобилей с нагнетателем. Другими словами, двигатели с наддувом были редким явлением. Объясняется это просто, так как на раннем этапе машины с турбодвигателем, механическим компрессором или одновременной комбинацией сразу двух решений зачастую ставились на дорогостоящие спортивные модели авто. Немаловажным фактором оказалась и надежность агрегатов данного типа, которые требовали повышенного внимания в процессе обслуживания и уступали по показателям моторесурса атмосферным ДВС. Кстати, сегодня это утверждение также справедливо для двигателей с турбиной, которые конструктивно сложнее компрессорных аналогов и еще дальше ушли от атмосферных версий.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector