Развитие водородного топлива как топливо будущего

Получение водорода

Получение водорода электролизом воды

Сейчас известно около десятка методов получения водорода из разных исходных материалов. Самый известный — гидролиз воды, ее разложение при пропускании электрического тока, но он требует больших затрат энергии. Главным направлением снижения энергозатрат при электролизе воды является поиск новых материалов для электродов и электролитов.

Разрабатываются методы получения водорода из воды с использованием неорганических восстановителей — электроотрицательных металлов и их сплавов с добавкой металлов-активаторов. Такие сплавы названы энергоаккумулирующими веществами (ЭАВ). Они позволяют получать из воды любое количество водорода. Еще одним способом выделения водорода из воды может стать ее фотоэлектрохимическое разложение под действием солнечного света.

Получение водорода парофазной переработкой метана

К распространенным методам относятся парофазная переработка метана (природного газа) и термический метод разложения угля и другого биоматериала. Перспективны термохимические циклы производства водорода, парофазные методы конверсии его из каменного и бурого угля и торфа, а также метод подземной газификации угля с получением водорода.

Отдельная тема — разработка катализаторов для получения водорода из органического сырья — продукта переработки биомассы. Но при этом наряду с водородом образуются значительные количества окиси углерода (СО), который необходимо утилизировать.

Получение водорода из биогаза

Еще один перспективный метод — процесс каталитической паровой переработки этанола. Можно также получить водород из угля (как каменного, так и бурого) и даже из торфа

Также все большее внимание привлекает сероводород. Это обусловлено низкими затратами энергии на электролитическое выделение водорода из сероводорода и большими запасами этого соединения в природе — в воде морей и океанов, в природном газе

Сероводород также получается в качестве побочного продукта нефтеперерабатывающей, химической, металлургической промышленности.

Водород можно получать с использованием плазменных технологий. С их помощью можно газифицировать даже самое низкокачественное углеродное сырье, например твердые бытовые отходы. В качестве источника термической плазмы используются плазмотроны — устройства, генерирующие плазменную струю.

Хранение водорода

Для хранения водорода непосредственно в автомобиле существуют следующие способы: газобаллонный, криогенный, металлогидридный.

В первом случае водород хранится в сжатом виде при давлении около 700 атм. При этом масса водорода составляет всего около 3% от массы баллона и для хранения сколько-нибудь заметного количества газа нужны весьма тяжёлые и объёмные баллоны

Это не говоря уже о том, что изготовление, зарядка и эксплуатация таких баллонов требуют особых мер предосторожности из-за опасности взрыва

Криогенный способ подразумевает сжижение водорода и хранение его в теплоизолированных сосудах при температуре -235 градусов. Это достаточно энергозатратный процесс – сжижение обходится в 30-40% той энергии, которая получится при использовании полученного водорода. Но, как-бы ни была совершенна теплоизоляция, водород в баке нагревается, давление увеличивается и газ стравливается в атмосферу через предохранительный клапан. Всего несколько дней – и баки пусты!

Самыми перспективными являются твердые накопители, так называемые металлогидриды. Эти соединения умеют вбирать в себя, как губка, водород при одних условиях и отдавать при других, например при нагревании. Чтобы это было экономически выгодно, такой металлогидрид должен «впитывать» не менее 6% водорода. Весь мир сейчас ищет подобные материалы. Как только материал будет найден — его подхватят технологи, и процесс «водородизации» пойдет.

Проблемы эксплуатации ДВС

В настоящий момент водородный двигатель не может в полной мере заменить традиционные моторы для автомобиля. Понимая принцип его работы, нельзя забывать о факторе опасности вещества.

Автопроизводители не смогут поголовно оснащать свои машины мотором, работающим на водороде, пока не устранят ряд препятствий. Главным из них считается сложность получения самого газа. Плюс комплектующие стоят дорого, что в настоящий момент делает производство слишком затратным.

Также есть проблемы с обеспечением надлежащего хранения вещества. Ведь чтобы поддерживать газ в нужном состоянии, требуется постоянно поддерживать температуру на уровне около -253 градусов.

Самым простым способом, который используют для получения газа, является электролиз обычной воды. Для промышленных масштабов нужны огромные энергозатраты на электролиз. С целью повышения рентабельности речь заходит об использовании ядерной энергетики. Но риски слишком высокие, потому инженеры и учёные думают над тем, как отыскать достойную альтернативу.

Чтобы перевозить и хранить полученный газ, применяются очень дорогие материалы и специальные механизмы, обладающие повышенным качеством и соответствующей стоимостью.

В процессе эксплуатации есть и другие сложности и препятствия, среди которых стоит выделить следующие:

  • Опасность взрыва. Если газ начнёт выходить из хранилища или просто из бака авто в условиях закрытого помещения, даже наличие небольшого источника энергии, такого как включённая лампочка в гараже, спровоцирует взрыв. А в случае нагретого воздуха ситуация становится ещё более опасной. Вещество обладает повышенной проницаемостью, что может спровоцировать попадание газа в коллектор выхлопной системы. В этой связи предпочтительнее для водорода использовать роторные двигатели;
  • Хранение. Оно предусматривает применение больших ёмкостей со специальными системами, защищающими от улетучивания. Также требуется защита от механических повреждений. В случае с грузовиками и большими автобусами это не проблема. А вот применительно к легковым авто появляются сложности, поскольку под бак отводится большое количество кубометров;
  • Негативное влияние и разрушение цилиндропоршневой группы. Это становится возможным, когда водород имеет высокую температуру и сталкивается с большими нагрузками. Страдает ЦПГ и смазка. Чтобы исключить эти проблемы, требуется специальный сплав и особые смазывающие компоненты, которые увеличивают стоимость изготовления водородных моторов. Отсюда и высокая цена самих автомобилей.

Проблем объективно много. Насколько они решаемые, говорить сложно. Хотя разработчики уверены, что изменить ситуацию в лучшую сторону возможно. И уже делаются большие шаги, подтверждающие подобные заявления.

Водородный двигатель: типы, устройство,принцип работы

ТИПЫ ВОДОРОДНЫХ ДВИГАТЕЛЕЙ

Первый тип водородного двигателя работает на топливных элементах. К сожалению, водородные двигатели данного типа до сих пор имеют высокую стоимость. Дело в том, что в конструкции содержаться дорогие материалы вроде платины.

Ко второму типу относятся водородные двигатели внутреннего сгорания. Принцип работы таких устройств сильно напоминает пропановые модели. Именно поэтому их часто перенастраивают для работы под водород. К сожалению, КПД подобных устройств на порядок ниже тех, что функционируют на топливных элементах.

УСТРОЙСТВО И ПРИНЦИП РАБОТЫ

Главное отличие двигателей на водороде от привычных нам сейчас бензиновых либо дизельных аналогов заключается в способе подачи и воспламенении рабочей смеси. Принцип преобразования возвратно-поступательных движений КШМ в полезную работу остается неизменным. Ввиду того что горение топлива на основе нефтепродуктов происходит медленно, камера сгорания наполняется топливно-воздушной смесью немного раньше момента поднятия поршня в свое крайнее верхнее положение (ВМТ). Молниеносная скорость реакции водорода позволяет сдвинуть время впрыска к моменту, когда поршень начинает свое возвратное движение к НМТ. При этом давление в топливной системе не обязано быть высоким (4 атм. достаточно).

В идеальных условиях водородный двигатель может иметь систему питания закрытого типа. Процесс смесеобразования происходит без участия атмосферного воздуха. После такта сжатия в камере сгорания остается вода в виде пара, который проходя через радиатор, конденсируется и превращается обратно в Н2О. Такой тип аппаратуры возможен в том случаи, если на автомобиле установлен электролизер, который отделит с полученной воды водород для повторной реакции с кислородом.

На практике такой тип системы осуществить пока что сложно. Для исправной работы и уменьшения силы трения в моторах используется масло, испарения которого являются частью отработанных газов. На современном этапе развития технологий устойчивая работа и беспроблемный запуск двигателя, работающего на гремучем газе, без использования атмосферного воздуха неосуществимы.

Двигатель на водородных топливных элементах

Обратите внимание, под водородными двигателями понимаются как агрегаты, работающие на водороде (водородный ДВС), так и моторы, которые используют водородные топливные элементы. Первый тип мы уже рассмотрели выше, теперь давайте остановимся на втором варианте

Топливный элемент на водороде фактически представляет собой «батарейку». Другими словами, это водородный аккумулятор с высоким КПД около 50%. Устройство основано на физико-химических процессах, в корпусе такого топливного элемента имеется особая мембрана, проводящая протоны. Эта мембрана разделяет две камеры, в одной из которых стоит анод, а в другой катод.

В камеру, где расположен анод, поступает водород, а в камеру с катодом попадает кислород. Электроды дополнительно покрыты дорогими редкоземельными металлами (зачастую, платиной).  Это позволяет играть роль катализатора, который оказывает воздействие на молекулы водорода.  В результате водород теряет электроны. Одновременно протоны идут через мембрану на катод, при этом катализатор также воздействует и на них. В итоге происходит соединение протонов с электронами, которые поступают снаружи.

Такая реакция образует воду,  при этом электроны из камеры с анодом поступают в электрическую цепь. Указанная цепь подключена к двигателю. Простыми словами, образуется электричество, которое заставляет двигатель работать от такого водородного топливного элемента.

Подобные водородные двигатели позволяет пройти не менее 200 км. на одном заряде. 

Безопасность водорода как топлива для автомобиля

Далее, не следует пренебрегать вопросом безопасности — водород летуч и легко воспламеняем: закрытое пространство автомобиля может заполниться опасным газом, а уже одно то, что смесь водорода и воздуха является взрывоопасной, способно напрочь оттолкнуть от его использования. Однако не следует слишком критично относиться к этим замечаниям, все знают, насколько опасны АЭС при возникновении проблем в их эксплуатации, и тем не менее они считаются самыми чистыми производителями электроэнергии.

Кроме того, не обязательно вообще кардинально менять автомобиль и вид топлива, сегодня уже есть возможность использовать гибридный транспорт, в котором, например, используется смесь водорода и дизельного топлива, что с одной стороны сокращает его расход, а с другой — уменьшает количество вредных выбросов в атмосферу.

Также никто не запрещает использовать водород в других транспортных системах, скажем, железнодорожной и морской: здесь не так важна компактность топливных емкостей, а в случае применения водорода в качестве топлива, например, для подводных лодок, они приобретают существенный козырь — практически полное отсутствие шумов.

Есть ли будущее у автомобилей на водородном топливе

В настоящее время имеется множество препятствий для того, чтобы перевести большую часть автомобилей на водородное топливо:

Высокая цена водорода. Примерная цена 9 долларов на 100 км пробега. Гибридный автомобиль (Toyota Prius) проедет те же сто км за 2,8 долларов, а Tesla Model S – за 3 бакса. А снижение цены на водород до уровня цен на бензин не прогнозируют даже сами производители автомобилей. Поэтому здесь не получится никакой экономии как при покупке транспорта, так и при заправках.

Производство водорода — вредно для экологии. Сейчас водород производится при помощи паровой конверсии метана, либо частичного окисления. После производства чистого водорода в атмосферу оксид углерода (углекислый газ, CO2), против которого борются многие страны при помощи альтернативных источников энергии для автомобилей. Поэтому здесь получается замкнутый круг.

Отсутствие развития водородных заправок. Для открытия средней водородной заправочной станции требуется не очень большие средства. Все станции можно пересчитать по пальцам, поэтому на водородном автомобиле далеко не уедешь. Придётся осуществлять поездки только в тех местах, где имеются эти самые водородные станции.

Высокая цена на водородные автомобили. Цена на Toyota Mirai на данный момент составляет от 58 тыс. долларов, а на самом деле его продают почти по себестоимости. Из-за таких цен многие не спешат с покупкой таких автомобилей.

Отсутствие преимуществ перед электрокарами. Запас хода, цена заправки, безопасность, мощность и разгон – везде выигрывают электрические автомобили по сравнению с водородными машинами. Единственный плюс у водородных авто – это очень быстрая заправка – 3-5 минут, тогда как электромобили заправляются за 30 минут и более. В любом случае можно в электрокарах можно быстро поменять батарею и через пару минут ехать на «полном баке». Да и когда изобретут более быстрый метод заправок электрических автомобилей, то водородные авто отойдут на 2 план.

Для чего тогда автоконцерны производят и разрабатывают автомобили? Во-первых, это вложение, вдруг через несколько лет именно эта технология окажется наиболее перспективной. Во-вторых, между фирмами идёт соперничество. В-третьих, в некоторых штатах законодательство так поменялось, что сделать водородное авто в 5 раз выгоднее, чем электрокар, плюс государство даёт постоянные гранты и вливания на развитие заправок. Если появится большое количество заводов по производству водорода, то цена автомобилей и водорода будет более интересная.

Видео: Автогиганты бьют по ТЕСЛА: ВОДОРОДНЫЕ автомобили будущего!

Водородный автомобиль – это авто будущего, к переходу на которые могут перейти в недалёком будущем. Сейчас самый популярный авто на водороде – это Toyota Mirai, стоимость которого сравнима с ценой электрокаров. Обеспечивается работа автомобилей при помощи специальных топливных ячеек или элементов, число которых достигает несколько сотен.

Если бы цена на газ была меньше, а заправок было бы больше, то авто с водородными двигателями получили бы не меньшую популярность, чем электромобили. Посмотрим, что покажет будущее.

Сколько раз прочитали статью: 5 096

Описание процесса сборки генератора водорода

Разобравшись в тонкостях действия водородного генератора, перейдем к его созданию. Для того чтобы собрать водородный генератор своими руками нам будет нужно:

  • канистра из полиэтилена;
  • провода для соединения;
  • резина из силикона;
  • специальный герметик;
  • шланги с хомутами.

Подобрав все необходимое, приступим к изготовлению генератора своими руками.

Выбрав емкость для воды, которая будет нам подходить, установим внутрь пластины. Подведем электроды к пластинам сквозь крышку емкости. В крышке нужно предусмотреть отверстие для пополнения генератора водой, которое можно будет герметично закрывать или нужно сделать крышку съемной. Еще потребуется сделать своими руками в верхнем отделе генератора трубку для движения во впускной коллектор водорода. Обязательно проверьте, чтобы все было полностью герметично. Если вы используете качественную изоляцию между пластинами, то сможете избежать потерь электроэнергии.
Если вы хотите модернизировать полученный генератор, то своими руками прикрепите к нему еще один резервуар. Вам будет нужно соединить оба резервуара специально приготовленными для этого трубками. Первую крепим от низа одного резервуара к нижнему отделу другого – это будет использовано для подачи воды. Второй трубкой соединяем верхние части резервуаров и это нужно для отвода газа. Емкость номер два будет использована для хранения как воды, так и газа. Емкость номер один будет непосредственно преобразовывать воду в газ. Также газ во втором резервуаре будет очищаться от лишних мелких частиц. Желательно расположить резервуары таким образом, чтобы длина шлангов между ними была минимальна.

Специальный электронный блок генератора можно собрать своими руками, но только в том случае, если у вас есть познания в электронике. Учитывайте, что блок управления нужен для того, чтобы изменять прямо пропорционально работе двигателя, силу тока, которая поступает на пластины. Нужно экспериментальным путем установить силу тока при холостых оборотах, а также при максимальной мощности. Именно это и будет минимальной и максимальной мощностью генератора. Управляющие сигналы поступают в блок управления из датчиков автомобиля.
После окончания сборки нужно проверить все шланги на герметичность. Если вы нанесете мыльную пену с помощью губки на места соединения, то утечка заявит о себе в виде пузырьков, которые надулись

Это важно! Так как влияет не только на опасность пожара, но и на уменьшение топлива. В случае утечек в водородном генераторе, автомобиль будет расходовать топлива больше

Также необходимо следить, чтобы соединения между электрическими выводами и пластинами не расшатывались. Это может стать причиной нагревания. Для того чтобы при тряске не получить повреждения, корпус должен быть прочным. Приклейте плоскости из оргстекла для придания прочности.
Все размеры вашего генератора водорода вы должны вычислить сами, поскольку они зависят от модели автомобиля, для которого вы изготавливаете прибор. Можно посоветовать устанавливать это устройство внутри автомобильного салона. Это позволит ему находиться в тепле зимой, что позволит жидкости свободно циркулировать. В летнюю пору он не будет слишком нагреваться, а это поможет избежать потерь КПД вашего генератора.

https://youtube.com/watch?v=0IewzWaaYCI

Сделать своими руками генератор водорода оказалось довольно просто. К тому же благодаря «работе своими руками» получилось значительно сэкономить. Генератор, сделанный подобным образом, не будет стоить дороже 100 долларов. В современных условиях можно найти массу приспособлений, которые используют водород. Поскольку запасы водорода в воде почти безграничны, то это позволяет увидеть перспективу массового применения подобных или модернизированных установок в будущем.

Модификации — гибриды

Схема водородного двигателя

Рассмотрим мотор, который сконструировал В.С. Кащеев.

По его разработки, двигатель кроме впускного клапана (6), через который подается воздух и выпускного клапана (7) для вывода выхлопных газов, в головке блока цилиндров (ГБЦ) есть специальный клапан для подачи водорода (9) и свечи зажигания (10), которые расположены в предкамере (8). Последняя располагается выше уровня поршня, когда он находится в нижней мертвой точке.

После того, как поршень достигнет НМТ (в камеру сгорания уже затянулся воздух через впускные клапана), подается водород и происходит воспламенение смеси. В это время уже открываются выпускные клапана. Так как разница давления в камере сгорания и за клапанами большая, при открытии выпускных клапанов, отработанные газы улетают и образуется вакуум и поршень притягивается в ВМТ и за счет импульса (обратно действующая сила) поршень перемещается обратно в НМТ.

Гибридный двигатель — это промежуточное звено между топливным мотором, работающем на продуктах нефти и на чистом водороде. Гибридные автомобили могут эксплуатироваться как на бензине/дизеле, так и на водороде.

Модифицированная топливная система

За основу берется обычный бензиновый двигатель. Топливо остается то же — бензин. Но, через впускной клапан подается воздух с водородом. Топливно-воздушная смесь такого состава повышает увеличить степень сжатия и уменьшить токсичность выхлопных вредных веществ.

Плюсы и минусы водородного топлива

Работа агрегата на таком виде топлива имеет свои преимущества и недостатки.

К плюсам относятся:

  • продуктом сгорания водорода является водяной пар, то есть нет загрязнения окружающей среде;
  • из-за своих свойств, водород вступает в реакцию быстрее, чем бензин и солярка;
  • из-за повышенной детонационной устойчивости можно увеличить степень сжатия в цилиндрах по сравнению с обычными ДВС;
  • при сгорании водорода теплоотдача в 2,5 раза выше, чем при сгорании бензиново-воздушной смеси;
  • довольно широкий диапазон вступления в реакцию. Чтобы водород (Н2) и кислород (О2) вступили в реакцию, достаточного всего лишь 4% водорода в этой смеси. Благодаря быстрой скорости взаимодействия этих веществ, можно настраивать режимы работы мотора, изменяя количество подачи вещества в цилиндр.

Минусы:

  • как уже отмечалось выше, водород — это очень летучее вещество, поэтому он проникает в микрощели, зазоры между соприкасающимися деталями;
  • сплавы обычного ДВС подвергаются разрушению, поэтому для увеличения износостойкости при контактировании с водородом, требуется использовать детали из сплавов повышенной прочности;
  • водород разрушает обычное моторное масло, поэтому ресурс двигателя при использовании такого смазывающего вещества, не большой;
  • требуется хранить водород в сжатом или жидком агрегатном состоянии. Если открыть крышку топливного бака, водород улетучится;
  • взрывоопасность.

Как получают водород для использования в качестве топлива для автомобиля

Водород можно получать паровой конверсией — выделением чистой его формы из летучих углеводородов, чаще всего для этого используют метан, данный способ является наиболее дешевым.

Газификация угля также дает свои «водородные плоды» за счет преобразования твердого и жидкого топлива в горючие газы.

За производство водорода посредством термического разложения воды (пиролиза) ратуют британцы, мотивируя это тем, что сырьем в подобном случае может являться обычный мусор.

Еще одними из способов добывания водорода являются частичное окисление и группа биотехнологических методов.

Последние используют явление выделения водорода микроорганизмами (например, некоторыми водорослями при недостатке кислорода и серы), либо разложение воды с участием все тех же микроорганизмов. Благодаря использованию катализаторов эффективность последнего метода можно увеличить на треть.

Способы добычи водорода в качестве использования в виде энергии

Водород не является чистым ископаемым вроде нефти и угля, нельзя так просто взять выкопать и использовать его. Для того, чтобы он стал энергией, его нужно раздобыть и испоьлзовать некоторую энергию для его переработки, после чего этот самый распространенный химический элемент станет топливом.

Практикуемым на данный день способом добычи водородного топлива является так называемый «паровой риформинг». Чтобы переработать обычный водород в топливо, используются углеводы, которые состоят из водорода и углерода. При химических реакциях, при определенной температуре выделяется огромное количество водорода, который и можно использовать в качестве топлива. Данное топливо не будет выделять вредных веществ в атмосферу во время эксплуатации, однако во время его добычи выделяется огромное количество углекислого газа, который плохо влияет на экологию. Поэтому данный метод хоть и является эффективным, он не должен браться в основу по добыче альтернативного топлива.

Есть двигатели, для которых подойдёт и чистый водород, они сами перерабатывают данный элемент в топливо, однако, как и при предыдущем способе, здесь также наблюдается огромное количество выбросов углекислого газа в атмосферу.

Очень эффективным способом добычи альтернативного топлива в виде водорода является электролиз. Электрический ток пускают в воду, вследствии чего она распадается на водород и кислород. Данный метод является дорогим и хлопотным, однако экологически чистым. Единственным отходом от получения и эксплуатации топлива является кислород, который лишь позитивно повлияет на атмосферу нашей планеты.

А самым перспективным и дешёвым способом получения водородного топлива является переработка аммиака. При необходимой химической реакции аммиак распадается на азот и водород, при чём водорода получается в трижды больше, ежели азота. Данный метод лучше тем, что он немного дешевле и менее затратный. Кроме того, аммиак легче и безопаснее транспортировать, а по прибытию к месту доставки, следует запустить химическую реакцию, выделить азот и топливо готово.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector