Зачем нужны соленоиды в акпп: что и за что отвечают клапаны гидроблока?

Типы соленоидов

Электрические соленоиды

В современных коробках автоматах используется несколько типов соленоидов. Впервые данные электрические клапаны стали использоваться американскими автопризводителями ещё в восьмидесятых годах прошлого века. По сути, они представляли собой специально открывающий и закрывающей клапан, который стоял в канале, по которому масляный насос гонит рабочую жидкость в систему. По сути, такие соленоиды имели два положения Открытое и Закрытое.

Соленоиды Volvo

На смену таким электрическим клапанам пришли соленоиды, которые были разработаны шведским автопроизводителем компанией Volvo. Подобные конструкции имели специальный толкающий сердечник и встроенный шариковый металлический клапан. Клапан позволял открывать или же закрывать масляный канал. Несмотря на свою эффективность работы подобная конструкция не получила должного распространения. Проблема заключалась в сложной конструкции, которая достаточно часто выходила из строя.

Трехканальные соленоиды

В скором времени должное распространение получили специальные трёхканальные соленоиды, которые позволяли с лёгкостью регулировать давлений системе и направлять масло к подвижным элементам или же в систему охлаждения. Тщательно продуманная конструкция таких трёхканальных соленоидов отличалась надёжностью и долговечностью.

Интеллектуальные соленоиды

В середине девяностых годов появились интеллектуальные соленоиды, которые позволяли оптимальным образом управлять работой гидроблока. Большой популярностью стали пользоваться соленоиды-регуляторы, которые использовали принцип вентиля и позволяли не просто перекрывать или же открывать канал для движения масла, но и открываться на определенную величину, что позволяло регулировать объем перекачиваемого масла. Открытие клапана осуществлялось по сечению в штоке, а управление осуществлялось от центрального компьютера, который направлял импульсный ток к магнитному сердечнику соленоида. Одновременно с изменением принципа работы инженеры ведущих мировых автопроизводителей модернизировали конструкцию электрических клапанов, что позволило сделать трех, четырех и пятиканальные соленоиды. Сама конструкция существенно упростилась, что в свою очередь положительно сказалось на надежности. Гидроблок стал служить намного дольше, а выходы его из строя по причине поломок соленоидов стали редкостью. Была фактически полностью решена проблема износа каналов гидроплиты, которая являлась одной из основных причин поломок автоматических коробок передач.

Соленоиды принято классифицировать по их назначению. Наибольшее распространение получили два типа электрических клапанов – EPC и ТСС. Первые отвечают за работу главного подающего канала и канала, по которому масло движется в маслосборник. Соленоид типа ТСС отвечает за блокировку гидротрансформатора и обеспечивает возможность увеличения объема подачи масла в коробку передач.

Соленоид на постоянном токе

Если длина соленоида намного больше его диаметра и не используется магнитный материал, то при протекании тока по обмотке внутри катушки создаётся магнитное поле, направленное вдоль оси, которое однородно и для постоянного тока по величине равно:

B=μnI{\displaystyle B=\mu _{0}nI} (СИ) (1),{\displaystyle \qquad (1),}

B=4πcnI{\displaystyle B={\frac {4\pi }{c}}nI} (СГС) (2),{\displaystyle \qquad (2),}

где μ{\displaystyle \mu _{0}} — магнитная проницаемость вакуума,
n=Nl{\displaystyle n=N/l} — число витков на единицу длины соленоида,
N{\displaystyle N} — число витков,
l{\displaystyle l} — длина соленоида,
I{\displaystyle I} — ток в обмотке.

Вследствие того, что две половины бесконечного соленоида в точке их соединения вносят одинаковый вклад в магнитное поле, магнитная индукция полубесконечного соленоида у его края вдвое меньше, чем в объёме. То же самое можно сказать о поле на краях конечного, но достаточно длинного соленоида:

BKP=12μnI{\displaystyle B_{\mathrm {KP} }={\frac {1}{2}}\mu _{0}nI} (СИ) (3).{\displaystyle \qquad (3).}

При протекании тока соленоид запасает энергию, равную работе, которую необходимо совершить для установления текущего тока I{\displaystyle I}. Величина этой энергии равна

Ecoxp=ΨI2=LI22(4),{\displaystyle E_{\mathrm {coxp} }={{\Psi I} \over 2}={{LI^{2}} \over 2}\qquad (4),}

где Ψ=NΦ{\displaystyle \Psi =N\Phi } — потокосцепление,
Φ{\displaystyle \Phi } — магнитный поток в соленоиде,
L{\displaystyle L} — индуктивность соленоида.

При изменении тока в соленоиде возникает ЭДС самоиндукции, значение которой

ε=−LdIdt(5){\displaystyle \varepsilon =-L{dI \over dt}\qquad (5)}.

Самостоятельная проверка и замена соленоидов АКПП

Соленоиды постоянно находятся в агрессивной среде – трансмиссионном масле с металлическими мелкими продуктами износа шестерен (стружка, осколки, сажа от тормозных фрикционов и пр.).Принцип действия клапана АКПП состоит в том, что его сердечник постоянно находится в магнитном поле. Этим магнитом притягиваются металлические фрагменты, находящиеся в масляном растворе, на стержень и обмотку катушки.

Если при эксплуатации автомобиля замечены такие признаки, как удары и толчки в районе коробки передач, загорелась лампочка датчика о неисправности АКПП, переключение передач сопровождается резкими ударами и рывками, рекомендуется проверить состояние соленоидов:

  1. Первичная компьютерная диагностика гидроблока.
  2. Если компьютер выдал заключение о поломке соленоидов, данные механизмы демонтируются с машины для дальнейшего анализа.
  3. При помощи тестера замеряется сопротивление соленоида. Данный показатель должен быть равен 10-25 Ом.
  4. Проверяется возможное заклинивание сердечника. Контакты клапана подсоединяются к источнику тока с напряжением 12 вольт. Если соленоид исправен, он должен при подключении издавать явный щелчок.

Существует метод проверки соленоидов при помощи сжатого воздуха. Считается, что при продувке клапана, находящегося в закрытом положении, он свободно пропускает воздушный поток. Соответственно, в открытом – воздух не проходит.

Замена соленоидов в АКПП может быть произведена в условиях гаража. Основное условие – тщательное выполнение рекомендаций. Тип соленоида определяется, исходя из особенностей конструкции автоматической коробки передач. Необходимые технические данные на АКПП можно посмотреть в инструкции по эксплуатации конкретного автомобиля.

Алгоритм действий при замене соленоидов АКПП:

  • демонтаж гидроблока с коробки передач (открутить болты, отжать специальные фиксаторы);
  • отключение от питания и извлечение соленоидов из блока;
  • установка новых соленоидов на освободившиеся места;
  • подключение элементов к сети;
  • установка гидроблока на место с заменой изношенной прокладки на новую.

Прокладка гидроблока нуждается в обязательной замене с целью предупреждения возможных утечек масляной жидкости.

Соленоиды коробки — автомат: назначение и принцип работы

Итак, соленоид АКПП является особым электромеханическим клапаном-регулятором (краном), который способен открывать и закрывать масляный канал гидроблока, по которому циркулирует рабочая жидкость (трансмиссионное масло ATF).

На момент появления первых автоматов коробка оснащалась простейшим механическим клапаном, однако в дальнейшем механику вытеснили соленоиды. Их главным преимуществом является точность, высокая скорость и повышенная надежность.

Устройство соленоида АКПП достаточно простое. Его конструкция предполагает наличие магнитного стержня, в котором имеется медная обмотка. Если просто, когда на обмотку подается электрический ток, это заставляет перемещаться магнитный стержень в направлении движения масла.

Если напряжение меняется, стержень смещается в противоположную сторону. Также соленоид имеет возвратную пружину, усилие которой позволяет улучшить качество его закрытия и повысит скорость и точность срабатывания.

Устанавливаются соленоиды в каналах гидроплиты. Если канал открыт, масло без ограничений проходит по каналу, перенаправляясь к различным элементам самой коробки или попадает в маслоприемник, чтобы охладиться.

Как уже было сказано выше, управляет работой таких клапанов ЭБУ. Контроллер подключается к клапану посредством шлейфа. Отметим, что часто проблемы возникают именно по причине повреждений шлейфа соленоида, а не самого клапана.

Идем далее. Сегодня сами соленоиды могут отличаться по конструкции, видам и типам. Самые простые решения на старых АКПП являются обычным электромеханическим клапаном, который работает по принципу открытие/закрытие.

Дальнейшее развитие привело к появлению устройства со стальным сердечником и шариковым клапаном. Решение стало более эффективным, однако слабым местом принято считать низкую надежность и сложность конструкции.

По этой причине немногим позже были созданы трехканальные соленоиды. Устройство позволяет эффективно регулировать давление, а также перенаправлять масло к различным деталям коробки или в систему охлаждения. При этом конструкция соленоида данного типа отличается повышенной надежностью.

Следующим этапом стало создание «умного» соленоида, который способен оптимизировать работу гидроблока. Речь идет о соленоидах-регуляторах, работающих по принципу вентиля. Такое устройство способно не только открывать и закрывать канал для подачи масла, но и осуществлять открытие/закрытие на ту или иную величину.

Использование таких устройство позволило увеличить общий срок службы гидроблока, поломки клапанной плиты по причине выхода из строя соленоидов свелись к минимуму, намного менее актуальной стала проблема износа каналов гидроблока.

Еще клапана гидроблока делятся по назначению (например, соленоид давления АКПП, соленоид EPC, LPC, соленоид контроля линейного давления, соленоид ТСС, shift соленоид и т.д.). Группа EPC и LPC отвечает за линейное давление, ТСС управляет блокировкой ГДТ, тогда как shift solenoid (линейный шифтовик) обеспечивает переключение передач.

Индуктивность соленоида

Индуктивность соленоида выражается следующим образом:

L=μn2V=μ4πz2l{\displaystyle L=\mu _{0}n^{2}V\!={\frac {\mu _{0}}{4\pi }}{\frac {z^{2}}{l}}} (СИ) (6),{\displaystyle \qquad (6),}
L=4πn2V=z2l{\displaystyle L=4\pi n^{2}V\!={\frac {z^{2}}{l}}} (СГС) (7),{\displaystyle \qquad (7),}

где μ{\displaystyle \mu _{0}} — магнитная проницаемость вакуума,
n=Nl{\displaystyle n=N/l} — число витков на единицу длины соленоида,
N{\displaystyle N} — число витков,
V=Sl{\displaystyle V=Sl} — объём соленоида,
z=πdN{\displaystyle z=\pi dN} — длина проводника, намотанного на соленоид,
S=πd24{\displaystyle S=\pi d^{2}/4} — площадь поперечного сечения соленоида,
l{\displaystyle l} — длина соленоида,
d{\displaystyle d} — диаметр витка.

Без использования магнитного материала магнитная индукция B{\displaystyle B} в пределах соленоида является фактически постоянной и равна

B=μNlI=μnI(8),{\displaystyle B=\mu _{0}{\frac {N}{l}}I=\mu _{0}nI\qquad (8),}

где I{\displaystyle I} — сила тока. Пренебрегая краевыми эффектами на концах соленоида, получим, что потокосцепление Ψ{\displaystyle \Psi } через катушку равно магнитной индукции B{\displaystyle B}, умноженной на площадь поперечного сечения S{\displaystyle S} и число витков N{\displaystyle N}:

Ψ=BSN=μN2ISl=μn2VI=LI(9).{\displaystyle \displaystyle \Psi =BSN=\mu _{0}N^{2}IS/l=\mu _{0}n^{2}VI=LI\qquad (9).}

Отсюда следует формула для индуктивности соленоида

L=μN2Sl=μn2V(10),{\displaystyle \displaystyle L=\mu _{0}N^{2}S/l=\mu _{0}n^{2}V\qquad (10),} эквивалентная предыдущим двум формулам.

Где находятся

Соленоиды располагаются в клапанной плите гидроблока. Устройство устанавливается в посадочное место, и фиксируется прижимной пружиной или болтом. С внешней части к штекеру катушки подсоединяется шлейф электропроводки, идущей от ЭБУ.

Гидроблок, в зависимости от конструкции коробки, может находиться снизу автомобиля или сбоку около колеса. Чтобы добраться до соленоидов, нужно снять масляный поддон. Определить где какой клапан гидроблока находится, можно по цвету проводки, например, в АКПП JF405E Дэу Матиз EPS подключен коричневым проводом, а электроклапан блокировки — синим.

Как проверить работоспособность

Проводник, имеющий форму спирали, в котором возникает магнитное поле, называется соленоидом. Применяется в автомобилях и предназначен для переключения датчиков и клапанов на расстоянии. Таким образом, если клапан или какой-либо датчик перестал функционировать, то, прежде всего, проверке подвергают соленоид.

Для проверки потребуется следующее:

  • компрессор;
  • оборудование для диагностики;
  • различные инструменты – отвертки, ключи и другие.

Для проверки соленоида его необходимо переключить в режим “омметра”. Отыскать соленоид в автомобиле можно посредством технической документации, которая идет с каждым транспортным средством. Соленоид должен быть подключен к бортовому компьютеру

Обратить внимание и на то, в каком состоянии находится клапан. Он может быть закрытым или открытым

Следующим этапом следует проверка электрического сопротивления соленоида. В работе потребуется применить омметр, который следует подключить к клеммам компонента. О том, каким сопротивлением должен обладать соленоид в горячем и холодном состоянии, указано в технической документации. Проверить контур компонента на замыкание. Необходимо каждый контакт через корпус автомобиля замкнуть. В течение долгого периода эксплуатации в соленоиде скапливается большое количество загрязняющих компонентов. По возможности следует промыть соленоид в бензине. Возможно, что приходится иметь дело с неразборным компонентом. Тогда придется заменить старый соленоид на новый, и можно быть уверенным в том, что проблема устранена.
Соленоид является источником мощного магнитного поля. В результате этого внутри скапливается большое количество металлических микрочастиц. Они оседают на стенках каналов и вскоре начинают препятствовать нормальной работе клапана. Подвижные части работают с перебоями. Удалять металлические микрочастицы можно посредством компрессора. Высокое давление воздуха удалит весь мусор, скопившийся за несколько лет или месяцев эксплуатации

Не забыть обратить внимание на то, в каком состоянии должен находиться клапан в обычном состоянии.
Если соленоид закрыт в нормальном положении, то выполнить простой тест. Отключить устройство от источника питания

После этого направить струю воздуха, которая должна задерживаться внутри, а не выходить через выходной канал. Подать напряжение на соленоид. В данной ситуации воздушная струя должна начать выходить через выходной канал. Если условия выполняются, то можно сказать, что компонент находится в пригодном состоянии.
С иной ситуацией придется столкнуться в случае с нормально открытым соленоидом. Как только компонент был обесточен, воздух должен начать выходить через выходной клапан. При подаче тока канал запирается, и воздух остается внутри.

Электромагнитный клапан.

Наличие короткого замыкания становится причиной низкого сопротивления. Его можно измерить и для этого необходимо отыскать электродвижущую силу, а также ее внутреннее сопротивление. На основании полученных сведений выполнить требуемые расчеты. Для расчета короткого замыкания потребуется лишь тестер.

Типичные проблемы

Очень часто соленоиды приходят в негодность из-за перегорания электрообмотки. На плунжере появляется нагар. Он забивается очень мелкой пылью от различных расходных материалов и узлов. Клапан-золотник  в таких случаях начинает клинить либо при рабочей температуре масла, либо «холодным».  Это легко исправляется путем промывки в специальных растворителях. Мастера применяют для очистки деталей ультразвук или переменный ток. В некоторых случаях фрикционная накладка истирается  до клеевого вещества. Тогда к нагару вместе с пылью, присоединяется еще и  клей. Это существенно усложнит процедуру ремонта.

Популярной причиной поломки также является износ составных частей самого соленоида. Это может быть:

  • манифольд;
  • втулки;
  • клапан;
  • плунжер;
  • шарик.

Чаще всего, по своему опыту могу сказать, что засоряется сам плунжер продуктами от износа фрикционов. Тогда и появляются проблемы в переключении. Появившийся на поверхности нагар истирает трущиеся поверхности клапанов, втулок. Бронзовые втулки истираются очень часто. Есть специальные наборы для самостоятельной замены втулок. Они существенно продлевают срок службы.

Соленоиды имеют свой срок службы. Он исчисляется количеством открываний –закрывания. Эта цифра находится в пределах диапазона от 300 000 до 400 000 циклов. Когда именно это произойдет, не всегда зависит от пробега, но в значительной степени больше зависит от работы электронного блока управления при нажатии на педаль газа. В некоторых коробках передач предусмотрен такой механизм работы, при котором одни работают на порядок интенсивнее других. Вследствие этого они выработают ресурс раньше.

Еще одной частой распространенной причиной поломки становятся различные механические повреждения (трещины) в корпусе. Может быть, и недостаточно упруга сама пружина. Или же случился обрыв электрической обмотки.

Описание и принцип работы соленоида

Линейный соленоид работает на том же основном принципе, что и электромеханическое реле, описанное в предыдущем уроке, и точно так же, как и реле, они также могут переключаться и управляться с помощью транзисторов или полевых МОП-транзисторов. Линейный соленоид — это электромагнитное устройство, которое преобразует электрическую энергию в механическое толкающее или тянущее усилие или движение. Линейный соленоид в основном состоит из электрической катушки, намотанной вокруг цилиндрической трубки с ферромагнитным приводом или «плунжером», который может свободно перемещать или скользить «ВХОД» и «ВЫХОД» в корпусе катушек. Виды соленоидов представлены на рисунке ниже.

Соленоиды могут использоваться для электрического открывания дверей и защелок, открытия или закрытия клапанов, перемещения и управления роботизированными конечностями и механизмами и даже для включения электрических выключателей только путем подачи питания на его катушку. Соленоиды доступны в различных форматах, причем наиболее распространенными типами являются линейный соленоид, также известный как линейный электромеханический привод (LEMA) и вращающийся соленоид.


Соленоид и сфера применения

Оба типа соленоидов, линейный и вращательный доступны в виде удержания (с постоянным напряжением) или в виде защелки (импульс ВКЛ-ВЫКЛ), при этом типы защелки используются в устройствах под напряжением или при отключении питания. Линейные соленоиды также могут быть разработаны для пропорционального управления движением, где положение плунжера пропорционально потребляемой мощности. Когда электрический ток протекает через проводник, он генерирует магнитное поле, и направление этого магнитного поля относительно его северного и южного полюсов определяется направлением потока тока внутри провода.

Эта катушка проволоки становится « электромагнитом » со своими собственными северным и южным полюсами, точно такими же, как у постоянного магнита. Сила этого магнитного поля может быть увеличена или уменьшена либо путем управления количеством тока, протекающего через катушку, либо путем изменения количества витков или петель, которые имеет катушка. Пример «электромагнита» приведен ниже.

Как проверить работоспособность

Проводник, имеющий форму спирали, в котором возникает магнитное поле, называется соленоидом. Применяется в автомобилях и предназначен для переключения датчиков и клапанов на расстоянии. Таким образом, если клапан или какой-либо датчик перестал функционировать, то, прежде всего, проверке подвергают соленоид.

Для проверки потребуется следующее:

  • компрессор;
  • оборудование для диагностики;
  • различные инструменты – отвертки, ключи и другие.

Для проверки соленоида его необходимо переключить в режим “омметра”. Отыскать соленоид в автомобиле можно посредством технической документации, которая идет с каждым транспортным средством. Соленоид должен быть подключен к бортовому компьютеру

Обратить внимание и на то, в каком состоянии находится клапан. Он может быть закрытым или открытым

Следующим этапом следует проверка электрического сопротивления соленоида. В работе потребуется применить омметр, который следует подключить к клеммам компонента. О том, каким сопротивлением должен обладать соленоид в горячем и холодном состоянии, указано в технической документации. Проверить контур компонента на замыкание. Необходимо каждый контакт через корпус автомобиля замкнуть. В течение долгого периода эксплуатации в соленоиде скапливается большое количество загрязняющих компонентов. По возможности следует промыть соленоид в бензине. Возможно, что приходится иметь дело с неразборным компонентом. Тогда придется заменить старый соленоид на новый, и можно быть уверенным в том, что проблема устранена.
Соленоид является источником мощного магнитного поля. В результате этого внутри скапливается большое количество металлических микрочастиц. Они оседают на стенках каналов и вскоре начинают препятствовать нормальной работе клапана. Подвижные части работают с перебоями. Удалять металлические микрочастицы можно посредством компрессора. Высокое давление воздуха удалит весь мусор, скопившийся за несколько лет или месяцев эксплуатации

Не забыть обратить внимание на то, в каком состоянии должен находиться клапан в обычном состоянии.
Если соленоид закрыт в нормальном положении, то выполнить простой тест. Отключить устройство от источника питания

После этого направить струю воздуха, которая должна задерживаться внутри, а не выходить через выходной канал. Подать напряжение на соленоид. В данной ситуации воздушная струя должна начать выходить через выходной канал. Если условия выполняются, то можно сказать, что компонент находится в пригодном состоянии.
С иной ситуацией придется столкнуться в случае с нормально открытым соленоидом. Как только компонент был обесточен, воздух должен начать выходить через выходной клапан. При подаче тока канал запирается, и воздух остается внутри.

Электромагнитный клапан.

Наличие короткого замыкания становится причиной низкого сопротивления. Его можно измерить и для этого необходимо отыскать электродвижущую силу, а также ее внутреннее сопротивление. На основании полученных сведений выполнить требуемые расчеты. Для расчета короткого замыкания потребуется лишь тестер.

Разнообразие соленоидов

На сегодняшний день известность получили следующие виды:

    1. Электрические соленоиды. Впервые они начали применяться американскими заводами по изготовлению авто. В 80-е годы это устройство представляло собой клапан, установленный в канале. По нему при помощи масляного наноса жидкость перемещалась в систему. В этом виде приспособлений было предусмотрено только два положения: открытое и закрытое.

    2. Соленоиды Volvo были созданы разработчиками из Швеции. Эти механизмы отличались по своим конструктивным особенностям: они были снабжены толкающим сердечником и шарообразным клапаном, изготовленным на основе металла. Здесь следует пояснить, что такое сердечник. По сути, это стержень, который надевается на деталь. Клапан с сердечником в составе активирует канал, предназначенный для перемещения масла. Готовый механизм отличался высокой эффективностью, однако, не обрел широкого распространения. Это объяснялось сложным устройством модели, а также тем, что она довольно часто ломалась.

    3. Трехканальные соленоиды дают возможность без лишних усилий регулировать давление в механизме и перемещать маслянистую жидкость к движущимся деталям. Конструкция была продумана с особой тщательностью, а потому готовые модели характеризуются высокой степенью надежности и продолжительным сроком эксплуатации.

    4. Интеллектуальные соленоиды были разработаны в 90-х годах прошлого века. Они давали возможность эффективно управлять функционированием гидравлического блока, а потому в свое время пользовались повышенным спросом. Особенно были популярны модели, которые практиковали принцип вентиля, говоря другими словами, давали возможность открывать или закрывать канал, а также приоткрывать его для контроля над объемом перемещающегося масла. Управление клапаном обеспечивалось через центральный компьютер. Он был нужен для передачи импульсного тока к сердечнику. Конструкция также претерпела существенные изменения, в основном, они затронули электрические клапаны. Это дало шанс создать соленоиды с несколькими каналами. При этом сама конструкция стала немного проще.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector