Передаточное отношение

Динамический расчет автомобиля

В процессе
динамического расчета выполняют
построение динамической характеристики
автомобиля.

Динамический
фактор D
предложен Е.А.
Чудаковым. Используют его для сравнительной
оценки динамических качеств различных
автомобилей в различных условиях их
движения (качество дороги, нагрузка
автомобиля). Так как в условиях
установившегося движения численные
значения динамического фактора и
суммарного коэффициента дорожного
сопротивления равны, т.е. ψ
= D.
Зная динамический
фактор автомобиля, можно определить,
какое дорожное сопротивление он будет
преодолевать.

Динамический
фактор есть отношение избыточной силы
тяги, к полному весу автомобиля:

3.1

Так как касательная
сила тяги Рк
и сила сопротивления воздуха Рw
изменяются с
изменением скоростного и нагрузочного
режимов работы автомобиля, то и
динамический фактор в условиях
эксплуатации не остается постоянным.
Его оценивают с помощью динамической
характеристики, которая представляет
собой D
= ƒ(V).

Основой для
построения динамической характеристики
(рис. 2) является внешняя скоростная
характеристика
карбюраторного двигателя
или регуляторная характеристика дизеля,
а также данные тягового расчета и ряд
параметров автомобиля-прототипа

а) Построение
динамической характеристики автомобиля.
Наметим не менее пяти точек скоростных
режимов автомобиля на каждой передаче.
Скорости движения автомобиля при
движении на различных передачах и при
различных значениях частот вращения
вала двигателя определяют по формуле

3.2

1-ая передача

2-ая передача

3-ья передача

4-ая передача

5-ая передача

4,007

10,19

25,95

66,038

168,05

9,016

22,94

58,38

148,58

378,11

16,028

40,79

103,801

264,15

672,20

19,647

49,99

127,236

323,79

823,96

25,33

64,46

164,048

417,47

1062,35

б) Для этих
скоростных режимов находим значения
крутящих моментов двигателя и определяют
касательные силы тяги на каждой передаче
по формуле:

Значение Мк

1-ая передача

2-ая передача

3-ья передача

4-ая передача

5-ая передача

263,7

28046,73

17581,6

11021,3

6908,9

4330,93

259,3

27585,15

17292,2

10839,9

6795,2

4259,66

234,7

24969,51

15652,5

9812,05

6150,8

3855,75

218

23189,11

14536,5

9112,42

5712,3

3580,83

188,3

20031,87

12557,3

7871,75

4934,5

3093,29

3.3

Для определения
силы сопротивления воздуха используют
зависимость.

значение n

1-ая передача

2-ая передача

3-ая передача

4-ая передача

5-ая передача

1400

1,257

2,005

3,199

5,103

8,14

2100

1,885

3,007

4,798

7,654

12,21

2800

2,514

4,01

6,398

10,205

16,28

3100

2,783

4,44

7,083

11,299

18,025

3520

3,16

5,04

8,043

12,829

20,467

Значения коэффициента
сопротивления воздуха kw
и площади поперечного сечения автомобиля
Fа
принимают из тягового расчета.

в) Значения
динамического фактора для каждой
передачи подсчитывают

по формуле:

Используя
полученные значения динамического
фактора, строят характеристику D
= ƒ(V).

1-ая передача

2-ая передача

3-я передача

4-ая передача

5-ая передача

0,3862

0,242

0,1514

0,0943

0,0573

0,3798

0,237

0,1485

0,0916

0,0534

0,344

0,215

0,1337

0,0811

0,0438

0,3191

0,1995

0,1237

0,0742

0,0379

0,2755

0,172

0,1062

0,0622

0,0279

Рис. 2. Динамическая
характеристика автомобиля

Библиографический
список

  1. Чудаков Е.Д. Теория
    автомобиля. М.: Машгиз, 1940.

  2. Скотников В.А.,
    Мащенский А.Н., Солонский А.С. Основы
    теории и расчета трактора и автомобиля.
    М.: Агропромиздат, 1986.

  3. Колчин А.И., Демидов
    В.П. Расчет автомобильных и тракторных
    двигателей. М.: Высшая школа, 1980.

  4. Чернышев В.А.
    Тягово-динамический расчет автомобиля:
    Учебное пособие. М: МГАУ им. В.П. Горячкина,
    1994.

  5. Чернышев В.А.
    Тяговый расчет трактора: Методические
    рекомендации. М.:-ГОСНИТИ, 1982.

17

Волновая передача

Ее работа основывается на принципе трансформации параметров движения благодаря волновому деформированию гибкого элемента механизма. По сути, такая передача является разновидностью планетарной передачи.

В состав волновой передачи входит жесткое колесо зубчатое, имеющее внутренние зубья, и вращающееся гибкое колесо с наружными зубьями. Оба колеса между собой входят в зацепление благодаря генератору волн, соединенному непосредственно с корпусом передачи.

За счет имеющихся конструктивных особенностей волновая передача наделена следующими достоинствами:

  • Небольшие габариты и масса.
  • Высокая кинематическая точность.
  • Передаточное отношение передачи в одной ступени имеет большой показатель и вполне может достигать 300.
  • Идеальная демпфирующая способность.
  • Формирование в одной ступени большого передаточного отношения.

К недостаткам же относятся:

  • Весьма сложная конструкция.
  • Высокие потери мощности на трение и деформацию гибкого колеса (КПД составляет порядка 0,7-0,85).

Классификация

Основная классификация цепных передач проводится по признаку использованной цепи. Выделяют:

  • Роликовые. Контакт звена и шестерни осуществляется посредством ролика, одновременно скрепляющего звенья.
  • Втулочные. Контакт идет посредством втулки, вращающейся вокруг ролика. Такое решение повышает ресурс цепного привода, но одновременно растут его вес и себестоимость.
  • Зубчатые. Набираются из шарнирно сочлененных пластин, на внутренней стороне которых имеются профилированные впадины под зубья.

Кроме того, по числу насаженных на вал зубчатых колес и, соответственно, числу параллельных рядов в одном звене, различают такие виды, как:

  • однорядные;
  • двухрядные;
  • многорядные.

Увеличение числа шестерен используется для повышения мощности либо для уменьшения габаритов изделия.

Определение передаточного числа главной передачи.

Передаточ­ное число главной передачи находят исходя из максимальной ско­рости автомобиля на высшей передаче, заданной техническими условиями на проектируемый автомобиль.

Значение передаточного числа главной передачи определяют по формуле

Ur=3,6(wmaxrk)/VmaxUkUд

где vmax — максимальная скорость автомобиля, км/ч; wmах — мак­симальная угловая скорость коленчатого вала, рад/с; rk — радиус колеса, м; Uk — передаточное число коробки передач на высшей передаче; ид — передаточное число дополнительной коробки пе­редач на высшей передаче (ид = 1).

Полагают, что передаточные числа коробки передач на выс­шей передаче имеют следующие значения: ик= 1,0 — для прямой передачи и ик = 0,9…1,0 — для повышающей передачи легковых автомобилей; ик — 1,0 — для грузовых автомобилей с числом пере­дач не более шести; ик = 0,7…0,8 — для многоступенчатых коро­бок передач грузовых автомобилей.

Найденное расчетным путем передаточное число главной пе­редачи UТ должно иметь следующие значения: не более 5,0 — у легковых автомобилей; не более 7,0 — у грузовых автомобилей грузоподъемностью до 8 т; не более 8,0 — у грузовых автомобилей грузоподъемностью свыше 8 т.

Расчетное значение передаточного числа главной передачи не­обходимо сравнить с существующими передаточными числами главных передач автомобилей аналогичного типа и назначения. В том случае, если у новой модели автомобиля проектируется ве­дущий мост, то это значение передаточного числа уточняют с учетом числа зубьев шестерен главной передачи.

Определение передаточного числа первой передачи коробки передач. Определение передаточных чисел промежуточных ступеней коробки передач.

При опре­делении передаточных чисел коробки передач нужно помнить о том, что I передача предназначена для преодоления максималь­ного сопротивления дороги. Промежуточные передачи коробки пе­редач используются при разгоне автомобиля, преодолении повы­шенного сопротивления движению, работе автомобиля в услови­ях, не позволяющих двигаться с высокой скоростью (гололед, выбитая дорога, задержка впереди идущим транспортом и т.д.), а также при торможении двигателем на затяжных пологих спусках.

При расчете передаточных чисел сначала находят передаточ­ное число I передачи по заданному техническими условиями мак­симальному коэффициенту сопротивления дороги ψmах или мак­симальному динамическому фактору автомобиля по тяге Dmax на I передаче.

Это передаточное число определяют с помощью выражения, полученного из формулы для динамического фактора, пренебре­гая силой сопротивления воздуха, так как она незначительна при небольших скоростях движения:

u1=(Gaψmaxrk)/Mmaxηтрuгuд

где Ga — вес автомобиля с полной нагрузкой, Н; Mmax — макси­мальный крутящий момент двигателя, Н • м.

Полученное передаточное число I передачи коробки передач не гарантирует отсутствия буксования ведущих колес автомобиля. Чтобы не было буксования ведущих колес при движении на I пере­даче, необходимо выполнение следующего неравенства:

(Mmaxηтрuгuдu1)/ Gark≤Dсц=(mp2Ga2φx)/Ga

где Dсц — динамический фактор автомобиля по сцеплению; тР2 -= 1,20…1,35 — коэффициент изменения реакций на задних веду­щих колесах; Ga2 —- вес, приходящийся на задние колеса автомо­биля с полной нагрузкой, Н; фх= 0,6…0,8 — коэффициент сцеп­ления колес с дорогой.

Из этого соотношения определяют новое передаточное число I передачи, при котором буксования ведущих колес не будет:

u1=(mp2Ga2φxrk)/ Mmaxηтрuгuд

После проверки передаточного числа I передачи на отсутствие буксования ведущих колес автомобиля из двух найденных переда­точных чисел I передачи коробки передач для дальнейших расче­тов выбирают меньшее.

По этому значению передаточного числа I передачи и извест­ному значению передаточного числа высшей передачи определя­ют передаточные числа промежуточных передач.

Если высшая передача прямая (ип = 1), то для расчёта переда­точных чисел промежуточных передач используют следующее выражение:

Uk=

где п’ — число передач, не считая повышающую передачу и пере­дачу заднего хода; к — номер передачи.

Если высшая передача повышающая (ик < 1), то значение ее передаточного числа выбирают в соответствии с типом автомоби­ля, а остальные передаточные числа промежуточных передач рас­считывают с помощью приведенного выше выражения.

Передаточное число передачи заднего хода

Uзк=(1.2…..1,3)u1

Окончательное значение передаточного числа передачи задне­го хода определяют при компоновке коробки передач.

Рассчитанные передаточные числа коробки передач являются ориентировочными и при проектировании новой коробки пере­дач могут незначительно изменяться.

Передаточные числа задних редукторов других автомобилей

С редукторами автомобилей ВАЗ более-менее понятно. А что можно сказать о других автомобилях? К примеру, Горьковский автозавод имеет большое количество современных моделей как среднетоннажных, так и легковых грузовых машин. Наиболее популярные модели ГАЗ – это «Газель ГАЗ-3302» и «Соболь ГАЗ-2752». Если не рассматривать полноприводные модификации этих автомобилей, то передаточное число редуктора заднего будет либо 5,125, либо 4,556, либо 4,3.

Самый тяговитый редуктор достался автомобилям ГАЗ с двигателями ЗМЗ406 и ЗМЗ402. Отличается лучшими характеристиками по мощности и рекомендуется для владельцев авто, перевозящих тяжёлые грузы и работающих в жестких условиях. Редуктор с меньшим числом будет давать большую динамику, как более скоростной. При этом следует метить относительно меньший ресурс эксплуатации.

Для полноты картины рассмотрим зарубежные варианты редукторов и их числа. Хорошим вариантом для сравнения будут заднеприводные модели немецкого автогиганта BMW. Передаточные числа редуктора БМВ колеблются в диапазоне от 3,07 до 4,1. При этом количество моделей агрегатов превышает десятку. Уже по этому показателю можно понять, как часто зарубежные конструкторы вносят изменения в узлы автомобилей.

Наиболее динамичный редуктор с числом 3,07 имеют модели серии Е90, Е91 и Е92. Если смотреть на мощные варианты, то можно выделить БМВ Х5 с 3-литровым двигателем, имеющий передаточное число заднего редуктора 4,1.

Общее определение

Редуктор, как конструкционный элемент, применяется в множестве механизмов. Это технический узел, необходимый для коррекции скорости вращения при передаче движения. Изобретение и распространение редукторов произошло во время развития двигателей разного типа. Это объясняется тем, что появилась необходимость превращать высокую оборотную скорость в усилие крутящего момента, или же наоборот. Для различных целей существует множество разновидностей редукторов, выбор которых играет важнейшую роль для нормального функционирования механизмов.

Передаточное отношение редуктора обозначается мультипликатором, который свидетельствует о типе механизма: понижающий он, или понижающий. Понижающие передаточные редукторы имеют мультипликатор больше 1, редуктор с передаточным числом менее 1 называется повышающим.

В автомобилях редуктора используются для перенаправления силового импульса на колеса с коробки передач, причем всегда скорость вращения снижается. Передаточное число — показатель того, во сколько раз скорость уменьшится. Если передаточное число равняется 4 — это означает, что крутящий момент, передающийся с редуктора на ось, в 4 раза меньше, чем скорость вращения трансмиссии.

Обычно такой механизм устанавливается на ведущую ось, если автомобиль является полноприводным, то устанавливаются два, по одному на каждую ось.

Редуктор не обязательно должен строго соответствовать установленным заводским параметрам, в некоторых случаях при поломке можно заменить на новый узел с меньшим или большим передаточным числом. Как проверить, какой механизм подойдет? Обычно можно делать замену на модели, в которых номинальное передаточное число отличаются не более чем на 0,5 в большую или меньшую сторону. Если взять, к примеру, редукторы автомобилей ВАЗ, есть возможность устанавливать 4 модели. Соответственно скорость работы редуктора уменьшается при увеличении передаточного числа.

Поэтому скорость автомобиля напрямую зависит от скорости работы редуктора, и с помощью замены этого узла можно сделать свой автомобиль более шустрым, например, поставив узел с передаточным числом 20.

При замене узла на модель с большим или меньшим числом, стоит позаботиться о правильной работе спидометра. Так как очень часто он начинает показывать некорректные показатели. Нужно либо заменить тросик, при серьезном сбое, либо просто отрегулировать спидометр.

Что удивительно, при замене редуктора, снять старый и установить новый это самое простое, сложнее всего все правильно отрегулировать и настроить, чтобы общее передаточное число соответствовало необходимым параметрам. Если это не удастся, то даже самый качественный редуктор может быстро выйти из строя.

Передаточное число — главная передача

Затем по зависимостям, установленным в теории автомобиля, определяют передаточные числа главной передачи и коробки передач, а также число передач.

Этими параметрами являются характеристика, рабочий объем и оборотность двигателя; передаточные числа главной передачи, коробки передач и демультипликатора.

Разные передаточные числа ступичных редукторов передних и задних колес в сочетании с передаточными числами главных передач переднего и заднего мостов обеспечивают одинаковые окружные скорости передних и задних колес, что необходимо для нормальной работы ходовой части тягача.

Повышение динамического фактора может быть достигнуто путем повышения крутящего момента двигателя или увеличения передаточного числа главной передачи. Улучшение динамичности грузовых автомобилей достигается за счет уменьшения их собственного веса, а легковых автомобилей — также и путем придания им обтекаемой формы.

Специально построенные газогенераторные автомобили ( заводского производства) отличаются некоторыми особенностями двигателя, увеличенным передаточным числом главной передачи и изменениями кузова и кабины в связи с размещением газогенераторной установки. Кроме того, на них устанавливаются специальные контрольные приборы и приспособления.

Мт — крутящий момент мотора, гк — передаточное число коробки передач, г — передаточное число главной передачи и — ij — кпд трансмиссии.

Тяговые качества грузовых автомобилей при постоянной работе с прицепами могут быть повышены за счет увеличения передаточного числа главной передачи при соответственном снижении их максимальной скорости.

Число оборотов привода спидометра, отнесенное к пути, пройденному автомобилем, обусловливается действительным радиусом качения шины, передаточным числом главной передачи автомобиля и передаточным числом привода вала спидометра.

Выбор числа оборотов того или иного подшипника зависит от средней эксплоатационной скорости автомобиля, от радиуса качения колес и от соответствующих передаточных чисел главной передачи и коробки передач.

Для того чтобы лучше приспособить грузовой автомобиль к заданным условиям эксплоатации, одно и то же шасси снабжается шинами либо стандартного, либо повышенного размера, с различным рисунком протектора, а передаточное число главной передачи соответственно подбирается. Самое короткобазное шасси данной модели используется не только для установки кузова-самосвала, предназначенного для перевозки компактных грузов, но применяется также и под тягач для седельного полуприцепа. Самое длиннобазное шасси снабжается обычно кузовом с решетчатыми бортами для перевозки емких грузов.

Исходными данными для предварительного выбора основных размеров и параметров зубчатых колес главных передач являются максимальное значение крутящего момента на ведущем зубчатом колесе главной передачи ( по двигателю или сцеплению ведущих колес), передаточное число главной передачи и0, а также ограничения по дорожному просвету.

Главная передача служит для передачи крутящего момента от карданного вала к полуосям ведущих колес под углом 90 и для повышения величины крутящего момента. Передаточное число главной передачи ( для легковых автомобилей 4 — 5, для грузовых 6 — 7) подбирается из расчета получения достаточной величины тягового усилия.

Автомобиль-самосвал МАЗ-205 изготовлен на базе автомобиля МАЗ-200 ( ЯАЗ-200) и отличается от него укороченной на 720 мм базой и укороченными вследствие этого карданными валами. Передаточное число главной передачи увеличено до 9 0 для улучшения тяговых качеств автомобиля при работе его в тяжелых дорожных условиях. Пневматический привод тормозов автомобиля несколько изменен, так как самосвал МАЗ-205 не предназначен для работы с прицепами.

Главная передача предназначена для увеличения крутящего момента, подводимого к ведущим колесам. Передаточное число главной передачи зависит в основном от мощности и быстроходности двигателя, назначения и общей массы автомобиля. Главные передачи могут быть с коническими, гипоидными или червячными шестернями.

Данные по автомобилю Москвич соответствуют передаточным числам коробки передач первой модели. Победа соответствуют передаточному числу главной передачи / 0 5 125 и передаточным числам коробки передач первой модели.

Расчет диаметра шкива

Вначале следует определить передаточное число, исходя из заложенной скорости вращения ведущего вала n1 и потребной скорости вращения ведомого вала n2/ Оно будет равно:

i=n1/n2

Если уже имеется в наличии готовый двигатель с приводным колесом, расчет диаметра шкива по передаточному отношению i проводится по формуле:

D2= D1/i.

Если же механизм проектируется с нуля, то теоретически подойдет любая пара приводных колес, удовлетворяющих условию:

D2/D1=n2/n1

На практике расчет ведущего колеса проводят, исходя из:

  • Размеров и конструкции ведущего вала. Деталь должна надежно крепится на валу, соответствовать ему по размету внутреннего отверстия, способу посадки, крепления. Предельно минимальный диаметр шкива обычно берется из соотношения Dрасч ≥ 2,5 Dвн
  • Допустимых габаритов передачи. При проектировании механизмов требуется уложиться в габаритные размеры. При этом учитывается также межосевое расстояние. чем оно меньше, тем сильнее сгибается ремень при обтекании обода и тем больше он изнашивается. Слишком большое расстояние приводит к возбуждению продольных колебаний. Расстояние также уточняют, исходя из длины ремня. Если не планируется изготовление уникальной детали, то длину выбирают из стандартного ряда.
  • Передаваемой мощности. Материал детали должен выдержать угловые нагрузки. Это актуально для больших мощностей и крутящих моментов.

Окончательный расчет диаметра окончательно уточняют по результату габаритных и мощностных оценок.

Формула расчета параметров прямозубой передачи

Чтобы определить параметры прямозубой шестеренки, потребуется выполнить некоторые предварительные вычисления. Длина начальной окружности равна π×D, где D — ее диаметр.

Шаг зацепления t – это расстояние между смежными зубами, измеренное по начальной окружности. Если это расстояние умножить на число зубов z, то мы должны получить ее длину:

π×D=z,

проведя преобразование, получим:

Если разделить шаг на число пи, мы получим коэффициент, постоянный для данной детали зубчатой передачи. Он и называется модулем зацепления m.

размерность модуля шестерни — миллиметры. Если подставить его в предыдущее выражение, то получится:

выполнив преобразование, находим:

Отсюда вытекает физический смысл модуля зацепления: он представляет собой длину дуги начальной окружности, соответствующей одному зубцу колеса. Диаметр окружности выступов D e получается равным

где h’- высота головки.

Высоту головки приравнивают к m:

Проведя математические преобразования с подстановкой, получим:

De=m×z+2m = m(z+2),

откуда вытекает:

Диаметр окружности впадин D i соответствует D e за вычетом двух высот основания зубца:

где h“- высота ножки зубца.

Для колес цилиндрического типа h“ приравнивают к значению в 1,25m:

Выполнив подстановку в правой части равенства, имеем:

D i = m×z-2×1,25m = m×z-2,5m;

что соответствует формуле:

D i = m(z-2,5m).

Полная высота:

и если выполнить подстановку, то получим:

h = 1m+1,25m=2,25m.

Иначе говоря, головка и ножка зубца относятся друг к другу по высоте как 1:1,25.

Следующий важный размер, толщину зубца s принимают приблизительно равной:

  • для отлитых зубцов: 1,53m:
  • для выполненных путем фрезерования-1,57m, или 0,5×t

Поскольку шаг t приравнивается к суммарной толщине зубца s и впадины s в, получаем формулы для ширины впадины

  • для отлитых зубцов: s в =πm-1,53m=1,61m:
  • для выполненных путем фрезерования- s в = πm-1,57m = 1,57m

Характеристики конструкции оставшейся части зубчатой детали определяются следующими факторами:

  • усилия, прикладываемые к детали при эксплуатации;
  • конфигурация деталей, взаимодействующих с ней.

Детальные методики исчисления этих параметров приводятся в таких ВУЗовских курсах, как «Детали машин» и других. Модуль шестерни широко используется и в них как один из основных параметров.

Для отображения шестеренок методами инженерной графики используются упрощенные формулы. В инженерных справочниках и государственных стандартов можно найти значения характеристик, рассчитанные для типовых размеров зубчатых колес.

Что такое зубчатая передача

В данном случае речь идет про механическое соединение двух, либо большего числа валов, приводящихся в движение благодаря специальным колесам, на чьей поверхности расположены соответствующие зубья. Данный вариант совмещения можно подразделить по следующим параметрам:

  • расположению рабочих элементов в корпусе;
  • вычисляемой скорости вращения колесной оси;
  • уровню защиты механизма от воздействия из вне;
  • типу, а также форме зубьев.

Здесь необходимо принимать во внимание тот факт, что наиболее значимая роль в работе всего механизма отведена передаточному отношению зубчатой передачи. Вычислить эти сведения можно благодаря стандартному выражению

Для поиска точных сведения подставляются различные параметры (к примеру, число зубьев). Здесь I12 – это передаточное отношение от первого звена ко второму (1 – ведущее звено, 2 – ведомое звено). Параметры d – диаметры звеньев. Переменные Z – число зубьев. Показатели M – крутящий момент для звеньев. W – угловые скорости звеньев, n – частота вращения звеньев.

В данном случае необходимо принимать во внимание тот факт, что конечный показатель напрямую зависит от числа присутствующих звеньев. Преимущество подобного соединения в том, что здесь присутствует постоянство реального, а также расчетного передаточных отношений

Именно поэтому, здесь отсутствует так называемый эффект проскальзывания. В зависимости от числа шестеренок и количества колес зубчатыми звеньями, оказывается значительное влияние на окончательную величину данного показателя.

Если же говорить про цилиндрические передачи, то здесь конечный параметр, за исключением указанных выше моментов, зависит от расстояния между осями. На практике, цилиндрические зубчатые механизмы очень часто применяются в автомобилестроении при производстве легкового и грузового транспорта. Наиболее часто подобные соединения встречаются в трансмиссии. Стоит отметить, что зубчатая передача выделяется наибольшим коэффициентом отдачи мощности. На практике, этот механизм способен вырабатывать до 4 500 кВт при условии, что передаточное число достигает 6,3.

Также некоторое распространение получили не только цилиндрические элементы, но и конструктивные компоненты с зубьями конического вида. Для них применяется ортогональное сочленение. Для того, чтобы рассчитать передаточное отношение конической передачи, требуется учитывать делительные диаметры, число зубьев, а кроме того, предусмотренные углы конусов. В конечном итоге, чтобы получить прочное поступательное движение на практике применяют соединение реечного типа. По конструкции этот механизм состоит из рейки со специальными зубьями, а также шестерни. При использовании реечной передачи обязательно нужно учитывать число зубьев на колесе, диаметр окружности, а также количество зубцов на самой рейке.

Передаточное отношение

Передаточное
отношение

– это отношение угловых скоростей
взаимодействующих (зацепляющихся)
зубчатых колес. Если взаимо-действие
колес внешнее, то их передаточное
отношение отрицательно (U1-2
< 0
), (рис.
5.2), если взаимодействие внутреннее, то
U1-2
> 0
(рис.
5.3). Знак «+» указывает на совпадение
векторов угловых скоростей (направлений
вращения колес).

Численно
величина передаточного отношения
ступени равна отношению угловых скоростей
,
(1/с), частот вращений,
(об/мин), или обратному отношению
количества зубьев колес:

.

Пара
зубчатых колес

с
внешним зацеплением:

1,
2 – зубчатые колеса

Пара
зубчатых колес

с
внутренним зацеплением:

1,
2 – зубчатые колеса

Передаточное
отношение сложных (многоступенчатых)
зубчатых передач (рис. 5.4) равно произведению
передаточных отношений ступеней:

,

где
– передаточные отношения ступеней.

Двухступенчатая
зубчатая передача

Например,
для двухступенчатой зубчатой передачи,
кинематическая схема которой представлена
на рис. величина передаточного отношения

.

Передаточное число [I]

Передаточное число редуктора рассчитывается по формуле:

I = N1/N2

где N1 – скорость вращения вала (количество об/мин) на входе; N2 – скорость вращения вала (количество об/мин) на выходе.

Полученное при расчетах значение округляется до значения, указанного в технических характеристиках конкретного типа редукторов.

Таблица 2. Диапазон передаточных чисел для разных типов редукторов

Тип редуктора Передаточные числа
Червячный одноступенчатый 8-80
Червячный двухступенчатый 25-10000
Цилиндрический одноступенчатый 2-6,3
Цилиндрический двухступенчатый 8-50
Цилиндрический трехступенчатый 31,5-200
Коническо-цилиндрический одноступенчатый 6,3-28
Коническо-цилиндрический двухступенчатый 28-180

ВАЖНО! Скорость вращения вала электродвигателя и, соответственно, входного вала редуктора не может превышать 1500 об/мин. Правило действует для любых типов редукторов, кроме цилиндрических соосных со скоростью вращения до 3000 об/мин

Этот технический параметр производители указывают в сводных характеристиках электрических двигателей.

Тип редуктора

Наличие кинематической схемы привода упростит выбор типа редуктора. Конструктивно редукторы подразделяются на следующие виды:

Червячный одноступенчатый со скрещенным расположением входного/выходного вала (угол 90 градусов).

Червячный двухступенчатый с перпендикулярным или параллельным расположением осей входного/выходного вала. Соответственно, оси могут располагаться в разных горизонтальных и вертикальных плоскостях.

Цилиндрический горизонтальный с параллельным расположением входного/выходного валов. Оси находятся в одной горизонтальной плоскости.

Цилиндрический соосный под любым углом. Оси валов располагаются в одной плоскости.

В коническо-цилиндрическом редукторе оси входного/выходного валов пересекаются под углом 90 градусов.

ВАЖНО! Расположение выходного вала в пространстве имеет определяющее значение для ряда промышленных применений

  • Конструкция червячных редукторов позволяет использовать их при любом положении выходного вала.
  • Применение цилиндрических и конических моделей чаще возможно в горизонтальной плоскости. При одинаковых с червячными редукторами массо-габаритных характеристиках эксплуатация цилиндрических агрегатов экономически целесообразней за счет увеличения передаваемой нагрузки в 1,5-2 раза и высокого КПД.

Таблица 1. Классификация редукторов по числу ступеней и типу передачи

Тип редуктора Число ступеней Тип передачи Расположение осей
Цилиндрический 1 Одна или несколько цилиндрических Параллельное
2 Параллельное/соосное
3
4 Параллельное
Конический 1 Коническая Пересекающееся
Коническо-цилиндрический 2 Коническая Цилиндрическая (одна или несколько) Пересекающееся/скрещивающееся
3
4
Червячный 1 Червячная (одна или две) Скрещивающееся
1 Параллельное
Цилиндрическо-червячный или червячно-цилиндрический 2 Цилиндрическая (одна или две) Червячная (одна) Скрещивающееся
3
Планетарный 1 Два центральных зубчатых колеса и сателлиты (для каждой ступени) Соосное
2
3
Цилиндрическо-планетарный 2 Цилиндрическая (одна или несколько) Планетарная (одна или несколько) Параллельное/соосное
3
4
Коническо-планетарный 2 Коническая (одна) Планетарная (одна или несколько) Пересекающееся
3
4
Червячно-планетарный 2 Червячная (одна) Планетарная (одна или несколько) Скрещивающееся
3
4
Волновой 1 Волновая (одна) Соосное

Определения

Эти термины важно запомнить. Ведущая ветвь ремня — набегает на ведущий шкив

При работе передачи растягивается

Ведущая ветвь ремня — набегает на ведущий шкив. При работе передачи растягивается.

Ведомая ветвь ремня — сходит с ведущего ремня и набегает на ведомый. При работе передачи расслабляется.

Межосевое (межцентровое) расстояние – кратчайшее расстояние между осями шкивов.

Натяжной ролик (леникс, от нем. lenix, lenixrolle — натяжной ролик) – элемент ремённой или цепной передачи; свободно вращающееся на оси колесо (шкив, звездочка, ролик), которое используется для регулирования натяжения ремня или цепи. Например, используется в тракторах для натяжения гусениц или в двигателе автомобиля для натяжения ремня ГРМ (газораспределительного механизма).

Пассик (от польского pasek — ремешок) – исторически вошедшее в наш оборот название приводного ремня круглого сечения. Слово «пассик» имеет польское происхождение. Его появление в русском словаре связывают с 80-ми годах 20-го века, когда им называли соответствующий элемент в импортном польском магнитофоне. Пассик, как правило, выполнен из резины или других полимерных материалов. Пассики использовались в устройстве протяжного механизма магнитной ленты старого кассетного магнитофона – он хорошо сглаживал рывки от электромотора и предохранял от искажений звука. «Пассики» входят в комплект конструктора Lego WeDo или ресурсного набора Lego MINDSTORMS Education EV3. В общем, всякий пассик — приводной ремень, но не каждый приводной ремень – пассик.

Приводной ремень – гибкий замкнутый элемент (ремень) для передачи вращения между двумя шкивами. Вращение передается за счет силы трения (гладкий ремень) или силы зацепления (ремень с зубчиками). Может иметь разную форму: бывают плоские ремни, зубчатые ремни, клиновидные ремни.

Ремённая передача (англ. belt drive)– механизм, предназначенный для передачи вращательного движения с помощью силы трения или зубчатого зацепления замкнутой гибкой связи (ремня) с помощью колес (шкивов), закрепленных на входном и выходном вале.

Угол обхвата – угол прилегания ремня к шкиву.

Шкив – фрикционное (англ. friction — трение) колесо с ободом или канавкой по окружности. Передает или принимает движение от приводного ремня. В отличие от блока, который имеет похожую форму, шкив всегда передавет усилие с оси на ремень, либо принимает усилие с ремня на ось. Блок же всегда свободно вращается на оси и обеспечивает изменение направления движения каната/троса, а также изменяет прикладываемую силу.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector