Что такое крутящий момент двигателя автомобиля

Таблица крутящего момента и мощности

  Марка автомобиля мощность, л.с. при об/мин крутящий момент, Нм приведенный момент, Нм
1 Alfa Romeo 8C Competizione 450 7000 470 470
2 Aston Martin DB9 477 6000 600 514
3 Audi A3 Sedan 2.0 TDI 150 4000 320 183
4 Audi A6 3.0 TDI 204 4500 400 257
5 Audi RS5 Coupe 450 8250 430 507
6 Audi S3 300 6200 380 337
7 Audi S4 333 7000 441 441
8 Audi S8 520 6000 652 559
9 Audi Q7 4.2 TDI 327 3750 760 407
10 Audi R8 4.2 420 7800 430 479
11 Bentley Mulsanne 512 4200 1020 612
12 BMW 330d F30 258 4000 560 320
13 BMW M135i F21 320 5800 450 373
14 BMW M5 F10 560 7000 680 680
15 BMW M550d xDrive F10 381 4400 740 465
16 BMW 750i F01 450 5500 650 511
17 BMW M3 E92 420 8300 400 474
18 BMW X5 M50d E70 381 4400 740 465
19 Bugatti Veyron 16.4 1001 6000 1250 1071
20 Cadillac Escalade 403 5700 565 460
21 Chevrolet Camaro ZL1 580 6000 754 646
22 Chevrolet Corvette Z06 507 6300 637 573
23 Citroën C5 V6 HDi 240 240 3800 450 244
24 Citroën DS5 eHDi 160 160 3750 340 182
25 Dodge Challenger SRT8 392 470 6000 637 546
26 Dodge SRT Viper 650 6150 814 715
27 Ferrari 458 Italia 570 9000 540 694
28 Ferrari 550 Maranello 480 7000 569 569
29 Ferrari F12 Berlinetta 740 8700 690 858
30 Ferrari FF 660 8000 683 781
31 Ford Explorer 2.0L EcoBoost 243 5500 366 288
32 Ford Fiesta ST 182 5700 240 195
33 Ford Focus ST 250 6000 340 291
34 Ford Kuga 1.6 EcoBoost 182 5700 240 195
35 Ford Mondeo 2.2 TDCi 200 3500 420 210
36 Honda Civic Type-R mk8 201 7800 193 215
37 Honda CR-V 190 7000 222 222
38 Honda S2000 240 7800 220 245
39 Hyundai Santa Fe 2.2 CRDi 197 3800 421 229
40 Infiniti G37 Sport 333 7000 365 365
41 Infiniti FX30d 238 3750 550 295
42 Jaguar XF 3.0 V6 D S 275 4000 600 343
43 Jaguar XJ 5.0 SC Supersport 510 6500 625 580
44 Jaguar XKR-S Coupe 550 6500 680 631
45 Jeep Grand Cherokee 3.0 CRD 250 4000 570 326
46 Jeep Grand Cherokee SRT8 465 6000 624 535
47 Kia Optima 2.4 180 6000 231 198
48 Kia Sorento 2.2 CRDi 197 3800 421 229
49 Koenigsegg Agera 940 6900 1100 1084
50 Lamborghini Aventador LP700-4 700 8250 690 813
51 Land Rover Discovery 4 5.0 V8 375 6500 510 474
52 Land Rover Discovery 4 SDV6 245 4000 600 343
53 Lexus LF-A 560 8700 480 597
54 Lexus IS-F 423 6600 505 476
55 Maserati 3200GT 370 6250 491 438
56 Maserati Granturismo S 440 7000 490 490
57 Maybach 57 550 5250 900 675
58 Mazda 6 2.2 SkyActiv-D 175 4500 420 270
59 Mazda CX-9 Touring AWD 277 6250 366 327
60 Mclaren F1 627 7500 651 698
61 Mclaren MP4-12C 600 7000 600 600
62 Mercedes-Benz A 45 AMG 360 6000 450 386
63 Mercedes-Benz C 250 CDI W204 201 4200 500 300
64 Mercedes-Benz CLA 250 211 5500 350 275
65 Mercedes-Benz GL63 AMG 558 5250 759 569
66 Mercedes-Benz S 600 W221 517 5000 830 593
67 Mercedes-Benz S 63 AMG W222 585 5500 900 707
68 Mercedes-Benz SL 65 AMG R231 630 5000 1000 714
69 MINI Cooper SD Countryman 143 4000 305 174
70 MINI JCW 211 6000 280 240
71 Mitsubishi Lancer Evolution X 295 6500 422 392
72 Mitsubishi Outlander 3.0 230 6250 291 260
73 Mitsubishi Pajero 3.2 DI-D 200 3800 441 239
74 Nissan GT-R R35 550 6400 632 578
75 Nissan Patrol 405 5800 560 464
76 Opel Astra OPC 280 5500 400 314
77 Opel Insignia 2.0 CDTI 195 4000 400 229
78 Opel Insignia OPC 325 5250 435 326
79 Peugeot 308 2.0 HDI 140 4000 340 194
80 Peugeot RCZ 200 THP 200 5800 275 228
81 Porsche 911 Carrera S 991 400 7400 440 465
82 Porsche 911 Turbo S 991 560 6750 750 723
83 Porsche Carrera GT 612 8000 590 674
84 Porsche Cayenne S Diesel 382 3750 850 455
85 Porsche Panamera Diesel 300 4000 650 371
86 Range Rover 5.0 Supercharged 510 6500 625 580
87 Range Rover Sport 4.4 TDV8 339 3500 700 350
88 Renault Clio RS 200 7100 215 218
89 Renault Megane dCi 160 160 3750 380 204
90 Rolls-Royce Ghost 570 5250 780 585
91 Rolls-Royce Wraith 635 5600 800 640
92 Skoda Fabia RS 180 6200 250 221
93 Skoda Octavia 2.0 TDI 143 4000 320 183
94 Subaru Impreza WRX STI 300 6200 350 310
95 Subaru Legacy Outback 3.6 250 6000 335 287
96 Toyota GT86 200 7000 205 205
97 Toyota RAV4 180 6000 233 200
98 Volkswagen Golf GTI 230 6200 350 310
99 Volkswagen Touareg 3.0 TDI 204 4750 450 305
100 Volvo S60 T6 304 5600 440 352
101 Volvo XC60 D5 215 4000 420 240

← Круиз-контроль
Ксенон →

  • 1
  • 8523

Направление действия величины M¯

Выше было показано, что вращающий момент — это векторная характеристика для данной системы. Куда направлен этот вектор? Ответить на этот вопрос не представляет особого труда, если вспомнить, что результатом произведения двух векторов является третий вектор, который лежит на оси, перпендикулярной плоскости расположения исходных векторов.

Остается решить, будет ли направлен момент силы вверх или вниз (на читателя или от него) относительно упомянутой плоскости. Определить это можно или по правилу буравчика, или с помощью правила правой руки. Приведем оба правила:

  • Правило правой руки. Если расположить правую кисть таким образом, чтобы четыре ее пальца двигались от начала вектора r¯ к его концу, а затем от начала вектора F¯ к его концу, то большой палец, оттопыренный, укажет на направление момента M¯.
  • Правило буравчика. Если направление вращения воображаемого буравчика совпадает с направлением вращательного движения системы, то поступательное движение буравчика укажет на направление вектора M¯. Напомним, что он вращается только по часовой стрелке.

Оба правила являются равноправными, поэтому каждый может использовать то, которое является для него более удобным.

При решении практических задач разное направление вращающего момента (вверх — вниз, влево — вправо) учитывается с помощью знаков «+» или «-«. Следует запомнить, что за положительное направление момента M¯ принято считать такое, которое приводит к вращению системы против часовой стрелки. Соответственно, если некоторая сила приводит к вращению системы по ходу стрелки часов, то создаваемый ее момент будет иметь отрицательную величину.

Соответствие электродвигателя нагрузке

Если нужно определить, отвечает ли вращающий момент определённого электродвигателя требованиям нагрузки, Вы можете сравнить характеристики скорости вращения/вращающего момента электродвигателя с характеристикой скорости вращения/ вращающего момента нагрузки. Вращающий момент, создаваемый электродвигателем, должен превышать потребный для нагрузки вращающий момент, включая периоды ускорения и полной скорости вращения.

Характеристика зависимости вращающего момента от скорости вращения стандартного электродвигателя и центробежного насоса.

Если мы посмотрим на характеристику , то увидим, что при ускорении электродвигателя его пуск производится при токе, соответствующем 550% тока полной нагрузки.

Когда двигатель приближается к своему номинальному значению скорости вращения, ток снижается. Как и следовало ожидать, во время начального периода пуска потери на электродвигателе высоки, поэтому этот период не должен быть продолжительным, чтобы не допустить перегрева.

Очень важно, чтобы максимальная скорость вращения достигалась как можно точнее. Это связано с потребляемой мощностью: например, увеличение скорости вращения на 1% по сравнению со стандартным максимумом приводит к 3%-ному увеличению потребляемой мощности

Потребляемая мощность пропорциональна диаметру рабочего колеса насоса в четвертой степени.

Уменьшение диаметра рабочего колеса насоса на 10% приводит к уменьшению потребляемой мощности на (1- (0.9 * 0.9 * 0.9 * 0.9)) * 100 = 34%, что равно 66% номинальной мощности. Эта зависимость определяется исключительно на практике, так как зависит от типа насоса, конструкции рабочего колеса и от того, насколько вы уменьшаете диаметр рабочего колеса.

Крутящий момент и лошадиная сила

Автолюбители нередко дискутируют друг с другом: чей двигатель мощнее. Но иногда и не представляют при этом, из чего складывается данный параметр. Общепринятый термин «лошадиная сила» был введён изобретателем Джеймсом Уаттом в XVIII веке.  Он придумал его, наблюдая за лошадью, которая была запряжена в поднимающий уголь из шахты механизм. Он рассчитал, что одна лошадь за минуту может поднять 150 кг угля на высоту 30-ти метров. Одна лошадиная сила эквивалентна 735,5 Ватт, или 1 кВт равен 1,36 л.с.

В первую очередь, мощность любого мотора оценивают в лошадиных силах, и лишь потом вспоминают о крутящем моменте. Но эта тяговая характеристика тоже даёт представление о конкретных тягово-динамических возможностях автомобиля. Крутящий момент является показателем работы силового агрегата, а мощность – основным параметром выполнения этой работы. Эти показатели тесно связаны друг с другом. Чем больше производится двигателем лошадиных сил, тем больше и потенциал крутящего момента. Реализуется этот потенциал в реальных условиях через трансмиссию и полуоси машины. Соединение этих элементов вместе и определяет, как именно мощность может переходить в крутящий момент.

Простейший пример – сравнение трактора с гоночной машиной. У гоночного болида лошадиных сил много, но крутящий момент требуется для увеличения скорости через редуктор. Чтобы такая машина двигалась вперёд, надо совсем немного работы, потому что основная часть мощности используется для развития скорости.

Что касается трактора, то у него может быть мотор с таким же рабочим объёмом, который вырабатывает столько же лошадиных сил. Но мощность в этом случае используется не для развития скорости, а для выработки тяги (См. тяговый класс). Для этого она пропускается через многоступенчатую трансмиссию. Поэтому трактор не развивает высоких скоростей, зато он может буксировать большие грузы, пахать и культивировать землю, и т.д.

В двигателях внутреннего сгорания сила передаётся от газов сгорающего топлива поршню, от поршня – передаётся на кривошипный механизм, и далее на коленчатый вал. А коленвал, через трансмиссию и приводы, раскручивает колёса.

Естественно, крутящий момент двигателя не постоянен. Он сильней, когда на плечо действует бо́льшая сила, и слабей – когда сила слабнет или перестаёт действовать. То есть, когда водитель давит на педаль газа, то сила, воздействующая на плечо, повышается, и, соответственно увеличивается крутящий момент двигателя.

Мощность обеспечивает преодоление всевозможных сил, которые мешают двигаться автомобилю. Это и сила трения в двигателе, трансмиссии и в приводах автомобиля, и аэродинамические силы, и силы качения колёс и т.д. Чем больше мощность, тем большее сопротивление сил машина сможет преодолеть и развить большую скорость. Однако мощность – сила не постоянная, а зависящая от оборотов мотора. На холостом ходу мощность одна, а на максимальных оборотах – совершенно другая. Многими автопроизводителями указывается, при каких оборотах достигается максимально возможная мощность автомобиля.

Необходимо учитывать, что максимальная мощность не развивается сразу. Автомобиль стартует с места практически при минимальных оборотах (немного выше холостого хода), и для того, чтобы отмобилизировать полную мощность, требуется время. Тут и вступает в дело крутящий момент двигателя. Именно от него и будет зависеть, за какой отрезок времени автомашина достигнет своей максимальной мощности – то есть, динамика её разгона.

Зачастую водитель сталкивается с такими ситуациями, когда требуется придать автомобилю значительное ускорение для выполнения необходимого маневра. Прижимая педаль акселератора в пол, он чувствует, что автомобиль ускоряется слабо. Для быстрого ускорения нужен мощный крутящий момент. Именно он и характеризует приёмистость автомобиля.

Основную силу в двигателе внутреннего сгорания вырабатывает камера сгорания, в которой воспламеняется топливно-воздушная смесь. Она приводит в действие кривошипно-шатунный механизм, а через него – коленчатый вал. Рычагом является длина кривошипа, то есть, если длина будет больше, то и крутящий момент тоже увеличится.

Однако увеличивать кривошипный рычаг до бесконечности невозможно. Ведь тогда придётся увеличивать рабочий ход поршня, а вместе с ним и размеры двигателя. При этом уменьшатся и обороты двигателя. Двигатели с большим рычагом кривошипного механизма можно применить только лишь в крупномерных плавательных средствах. А в легковых автомашинах с небольшими размерами коленчатого вала не поэкспериментируешь.

Сила есть — ума не надо?

И еще немного о самом простом. Вернемся к тому же банальному закручиванию гайки. Чтобы быть закрученной, гайке нужно получить крутящий момент определенной величины. Причем независимо от прилагаемого для этого усилия. На схеме — длина рукоятки ключа 200 мм или 0,2 м. Чтобы закрутить гайку, взявшись за конец ключа, нужно передать ей крутящий момент, равный 100 Н * 0,2 м = 20 Н*м. Но взявшись закручивать гайку посередине рукоятки использовав половинное плечо в 100 мм, мы ей должны дать те же 20 Н*м, но при этом приложить вдвое больше силы:
200 Н * 0,1 м = 0,2 м

Именно поэтому на практике, для того, чтобы потратить меньше силы для получения одинакового результата, нужно использовать больший размер плеча. Будь это закручивание гайки или переворачивание тяжелого камня. Потому что момент — это физическая величина, характеризующая вращательное движение. Грубо говоря, момент — это и есть само вращение. А состоит вращение из двух компонентов: силы и плеча. Причем этим плечом может быть как длина рукоятки гаечного ключа, так и радиус турбинного колеса.

Единицы измерения момента силы

Несколько слов также следует сказать о том, в каких единицах в СИ измеряется вращающий момент. Согласно записанной для него формуле, он измеряется в ньютонах на метр (Н*м). Однако в этих единицах также измеряется работа и энергия в физике (1 Н*м = 1 джоуль). Джоуль для момента M¯ не применяется, поскольку работа является скалярной величиной, M¯ же — это вектор.

Тем не менее совпадение единиц момента силы с единицами энергии не является случайным. Работа по вращению системы, совершенная моментом M, рассчитывается по формуле:

Откуда получаем, что M также может быть выражен в джоулях на радиан (Дж/рад).

Увеличение крутящего момента двигателя – приемы модернизации

Такая величина, как крутящий момент, совсем мало зависит от того, насколько быстро вращается коленвал, так как он определяется объемом мотора и давлением в цилиндре. Существует несколько способов, с помощью которых его можно увеличить:

Чип тюнинг двигателя

Первый вариант тюнинга заключается в оптимизации всего, с чем работает агрегат. Система выпуска и заводские распределительные валы заменяются аналогами, с более высокой производительностью. Далее стоит заменить воздушный фильтр, дроссельную заслонку. Этот подход относительно прост и не затратный, однако можно рассчитывать на прирост мощности не более, чем на 20-30%.

Второй путь – модификация двигателя. Здесь предстоит несколько изменить характеристики двигателя. Данный способ идеален для инжекторных авто. Его суть в программном изменении чипа, подающего сигналы основным устройствам транспортного средства

Однако действовать нужно предельно осторожно, тщательно подбирая изменения, которые будут внесены

В результате такой сложной модификации, крутящий момент авто может увеличиться на 5-20%. На расходе топлива это сильно не отобразится, а в некоторых случаях он даже может снизиться. Помимо этого, достаточно высокие результаты даст прошивка.

Распределительный вал

Когда есть возможность, можно заменить обычный распредвал на спортивный, прирост производительности сразу даст изменение программы, которая управляет подачей рабочей смеси. Спортивный распределительный вал отличается от стокового профилем кулачков, а соответственно – фазами газораспределения. Это значит, что, таким образом можно добиться эффективной подачи рабочей смеси. Чем ее больше – тем больше давление на поршень. Такие действия способствуют к увеличению крутящего момента.

Доработка головки блока цилиндра

Значительный прирост производительности даст турбирование агрегата. В не модифицированном моторе сгораемая смесь, которая впускается головкой блока цилиндра, эффективно всасывается тактом. В случае модификации, смесь подается непосредственно турбиной, что позволяет существенно увеличить объем сгораемого газа, а значит и увеличить мощность.

Рабочий объем

Действенный метод увеличить крутящий момент – увеличить рабочий объем. Для этого шатуны, поршни и коленчатый вал меняются на аналоги, только с лучшими характеристиками. Такая модификация несколько увеличит крутящий момент, но только между низкими и средними оборотами агрегата. Это значит, что для получения необходимой мощности теперь не придется раскручивать мотор до максимально высоких оборотов, что положительно скажется на рабочих характеристиках.

Камера сгорания

Прирост мощности мотора даст возможность уменьшить камеру сгорания, поскольку уменьшение объема незначительно увеличит степень сжатия. Для того чтобы уменьшить камеру сгорания, вероятнее всего, придется фрезеровать головки блока цилиндра. Помимо этого, можно попробовать подобрать поршень такого размера, чтобы он занимал больший объем в верхней части. Однако стоит учитывать, что в 16-от клапанных моторах поршень, как правило, вплотную приближен к клапанам, поэтому заменить его поршнем иной формы не получится.

Поршни

Еще один способ увеличит крутящий момент – поршни двигателя заменить на более легкие аналоги. Это поможет уменьшить нагрузку на коренные шейки и коленчатый вал. Легкие поршни не так инертны, а значит – они намного легче смогут останавливаться в «мертвых точках».

Так же можно поставить поршни большего диаметра. Для этого придется расточить блоки цилиндров, однако это так же негативно скажется на динамических свойствах мотора: может уменьшиться ресурс двигателя. Прибегать к данному способу стоит в исключительных случаях.

Определение терминологии

Джеймс Томсон , брат лорда Кельвина , ввел термин « крутящий момент» в английскую научную литературу в 1884 году. Однако термин « крутящий момент» используется в разных словарях в зависимости от географического положения и области обучения. Эта статья следует определению, используемому в физике США при использовании слова крутящий момент . В машиностроении Великобритании и США крутящий момент называется моментом силы , обычно сокращенным до момента . Эти термины взаимозаменяемы в терминологии физики США и Великобритании, в отличие от машиностроения США, где термин крутящий момент используется для обозначения тесно связанного «результирующего момента пары ».

Крутящий момент и момент в терминологии машиностроения США

В машиностроении США крутящий момент математически определяется как скорость изменения углового момента объекта (в физике это называется «чистый крутящий момент»). Определение крутящего момента гласит, что одна или обе угловая скорость или момент инерции объекта изменяются. Момент — это общий термин, используемый для обозначения тенденции одной или нескольких приложенных сил вращать объект вокруг оси, но не обязательно изменять угловой момент объекта (понятие, которое в физике называется крутящим моментом ). Например, вращающая сила, приложенная к валу, вызывающему ускорение, например, ускорение бурового долота из состояния покоя, приводит к моменту, называемому крутящим моментом . Напротив, поперечная сила на балке создает момент (называемый изгибающим моментом ), но поскольку угловой момент балки не изменяется, этот изгибающий момент не называется крутящим моментом . Точно так же с любой парой сил на объекте, у которого не изменяется его угловой момент, такой момент также не называется крутящим моментом .

Крутящий момент машины

Кривая крутящего момента мотоцикла («BMW K 1200 R 2005»). Горизонтальная ось показывает скорость (в об / мин ), с которой вращается коленчатый вал , а вертикальная ось — крутящий момент (в ньютон-метрах ), который двигатель способен обеспечить на этой скорости.

Крутящий момент является частью базовой спецификации с двигателем : при регистрации мощности выхода двигателя выражаются в его крутящий момент , умноженном на его скоростью вращения оси. Двигатели внутреннего сгорания вырабатывают полезный крутящий момент только в ограниченном диапазоне скоростей вращения (обычно от 1000 до 6000 об / мин для небольшого автомобиля). Можно измерить изменяющийся выходной крутящий момент в этом диапазоне с помощью динамометра и отобразить его в виде кривой крутящего момента.

Паровые двигатели и электродвигатели, как правило, развивают максимальный крутящий момент, близкий к нулевым оборотам, причем крутящий момент уменьшается с увеличением скорости вращения (из-за увеличения трения и других ограничений). Поршневые паровые машины и электродвигатели могут запускать большие нагрузки с нуля без сцепления .

Работа и мощность

Теперь остановимся на таком понятии как «работа», которое в данном контексте имеет особое значение. Работа совершается всякий раз, когда сила — любая сила — вызывает движение. Работа равна силе, умноженной на расстояние. Для линейного движения мощность выражается как работа в определённый момент времени.

Если мы говорим о вращении, мощность выражается как вращающий момент (T), умноженный на частоту вращения (w).

Частота вращения объекта определяется измерением времени, за которое определённая точка вращающегося объекта совершит полный оборот. Обычно эта величина выражается в оборотах в минуту, т.е. мин-1 или об/мин. Например, если объект совершает 10 полных оборотов в минуту, это означает, что его частота вращения: 10 мин-1 или 10 об/мин.

Итак, частота вращения измеряется в оборотах в минуту, т.е. мин-1.

Приведем единицы измерения к общему виду.

Для наглядности возьмём разные электродвигатели, чтобы более подробно проанализировать соотношение между мощностью, вращающим моментом и частотой вращения. Несмотря на то, что вращающий момент и частота вращения электродвигателей сильно различаются, они могут иметь одинаковую мощность.

Например, предположим, что у нас 2-полюсный электродвигатель (с частотой вращения 3000 мин-1) и 4-полюсной электродвигатель (с частотой вращения 1500 мин-1). Мощность обоих электродвигателей 3,0 кВт, но их вращающие моменты отличаются.

Таким образом, вращающий момент 4-полюсного электродвигателя в два раза больше вращающего момента двухполюсного электродвигателя с той же мощностью.

Как образуется вращающий момент и частота вращения?

Теперь, после того, как мы изучили основы вращающего момента и скорости вращения, следует остановиться на том, как они создаются.

В электродвигателях переменного тока вращающий момент и частота вращения создаются в результате взаимодействия между ротором и вращающимся магнитным полем. Магнитное поле вокруг обмоток ротора будет стремиться к магнитному полю статора. В реальных рабочих условиях частота вращения ротора всегда отстаёт от магнитного поля. Таким образом, магнитное поле ротора пересекает магнитное поле статора и отстает от него и создаёт вращающий момент. Разницу в частоте вращения ротора и статора, которая измеряется в %, называют скоростью скольжения.

Скольжение является основным параметром электродвигателя, характеризующий его режим работы и нагрузку. Чем больше нагрузка, с которой должен работать электродвигатель, тем больше скольжение.

Помня о том, что было сказано выше, разберём ещё несколько формул. Вращающий момент индукционного электродвигателя зависит от силы магнитных полей ротора и статора, а также от фазового соотношения между этими полями. Это соотношение показано в следующей формуле:

Сила магнитного поля, в первую очередь, зависит от конструкции статора и материалов, из которых статор изготовлен. Однако напряжение и частота тока также играют важную роль. Отношение вращающих моментов пропорционально квадрату отношения напряжений, т.е. если подаваемое напряжение падает на 2%, вращающий момент, следовательно, уменьшается на 4%.

Крутящий момент двигателя

Стоит понимать, что мощность мотора – это энергия, которая вырабатывается двигателем. И именно эта энергия преобразуется в крутящий момент на выходном (коленчатом) валу двигателя, далее момент изменяется в трансмиссии (при помощи нужных передаточных чисел шестерен) и после передается на привода, или ведущие мосты и после на колеса.

Тронуться и поехать, вы сможете даже на маломощном двигателе (причем для этого нам не нужно много мощности), здесь работают передаточные числа, которые точно подобраны в трансмиссии вашего авто.

НО мы же не хотим ездить со скоростью 20 – 40 км/ч, нам нужно ускорение, быстрое передвижение. А для этого просто необходим достаточный крутящий момент при всех диапазонах скоростей. Это достигается – достаточной мощностью двигателя и подбором шестерен в трансмиссии и приводах, мостах (если есть).

Если вывести определение:

Крутящий момент – это сила, которая умножена на плечо ее приложения, которую может предоставить мотор машине для преодоления тех или иных сопротивлений движению. Измерения производят в ньютонах, а рычаг измеряется в метрах.

Если разобрать, просто «на пальцах формулу», то 1 Н·м – это сила с которой 0,1 кг, давят на конец рычага (это поршень) длиной в 1 метр. Как становится понятно, в двигателе роль рычага выполняет кривошип коленчатого вала, через который и производится крутящий момент. Понятно, что кривошип, длинной не 1 метр, но момент вычисляется из приложенных характеристик.

Именно от этого показателя и зависит время достижения силовым агрегатом максимальной мощности, а значит и динамики разгона авто.

Если образно утрировать — то момент, собирает все лошадиные силы в «кулак» который и раскручивает мотор, и чем больше этот кулак, тем быстрее раскручивается мотор и ускоряется автомобиль.

Нагрузка насосов и типы нагрузки электродвигателя

Выделяют следующие типы нагрузок:

Постоянная мощность

Термин «постоянная мощность» используется для определённых типов нагрузки, в которых требуется меньший вращающий момент при увеличении скорости вращения, и наоборот. Нагрузки при постоянной мощности обычно применяются в металлообработке, например, сверлении, прокатке и т.п.

Постоянный вращающий момент

Как видно из названия — «постоянный вращающий момент» — подразумевается, что величина вращающего момента, необходимого для приведения в действие какого- либо механизма, постоянна, независимо от скорости вращения. Примером такого режима работы могут служить конвейеры.

Переменный вращающий момент и мощность

«Переменный вращающий момент» — эта категория представляет для нас наибольший интерес. Этот момент имеет отношение к нагрузкам, для которых требуется низкий вращающий момент при низкой частоте вращения, а при увеличении скорости вращения требуется более высокий вращающий момент. Типичным примером являются центробежные насосы.

Вся остальная часть данного раздела будет посвящена исключительно переменному вращающему моменту и мощности.

Определив, что для центробежных насосов типичным является переменный вращающий момент, мы должны проанализировать и оценить некоторые характеристики центробежного насоса. Использование приводов с переменной частотой вращения обусловлено особыми законами физики. В данном случае это законы подобия, которые описывают соотношение между разностями давления и расходами.

Во-первых, подача насоса прямо пропорциональна частоте вращения. Это означает, что если насос будет работать с частотой вращения на 25% больше, подача увеличится на 25%.

Во-вторых, напор насоса будет меняться пропорционально квадрату изменения скорости вращения. Если частота вращения увеличивается на 25%, напор возрастает на 56%.

В-третьих, что особенно интересно, мощность пропорциональна кубу изменения скорости вращения. Это означает, что если требуемая частота вращения уменьшается на 50%, это равняется 87,5%-ному уменьшению потребляемой мощности.

Итак, законы подобия объясняют, почему использование приводов с переменной частотой вращения более целесообразно в тех областях применения, где требуются переменные значения расхода и давления. Grundfos предлагает ряд электродвигателей со встроенным частотным преобразователем, который регулирует частоту вращения для достижения именно этой цели.

Так же как подача, давление и мощность, потребная величина вращающего момента зависит от скорости вращения.

На рисунке показан центробежный насос в разрезе. Требования к вращающему моменту для такого типа нагрузки почти противоположны требованиям при «постоянной мощности». Для нагрузок при переменном вращающем моменте потребный вращающий момент при низкой частоте вращения — мал, а потребный вращающий момент при высокой частоте вращения — велик. В математическом выражении вращающий момент пропорционален квадрату скорости вращения, а мощность — кубу скорости вращения.

Это можно проиллюстрировать на примере характеристики вращающий момент/частота вращения, которую мы использовали ранее, когда рассказывали о вращающем моменте электродвигателя:

Когда электродвигатель набирает скорость от нуля до номинальной скорости, вращающий момент может значительно меняться. Величина вращающего момента, необходимая при определённой нагрузке, также изменяется с частотой вращения. Чтобы электродвигатель подходил для определённой нагрузки, необходимо чтобы величина вращающего момента электродвигателя всегда превышала вращающий момент, необходимый для данной нагрузки.

В примере, центробежный насос при номинальной нагрузке имеет вращающий момент, равный 70 Нм, что соответствует 22 кВт при номинальной частоте вращения 3000 мин-1. В данном случае насосу при пуске требуется 20% вращающего момента при номинальной нагрузке, т.е. приблизительно 14 Нм. После пуска вращающий момент немного падает, а затем, по мере того, как насос набирает скорость, увеличивается до величины полной нагрузки.

Очевидно, что нам необходим насос, который будет обеспечивать требуемые значения расход/напор (Q/H). Это значит, что нельзя допускать остановок электродвигателя, кроме того, электродвигатель должен постоянно ускоряться до тех пор, пока не достигнет номинальной скорости. Следовательно, необходимо, чтобы характеристика вращающего момента совпадала или превышала характеристику нагрузки на всём диапазоне от 0% до 100% скорости вращения. Любой «избыточный» момент, т.е. разница между кривой нагрузки и кривой электродвигателя, используется как ускорение вращения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector