Устройство, схема и узлы гидравлической системы мтз 80
Содержание:
- Шестеренные
- Что такое гидравлический расчет
- Сфера использования
- Устройство и принцип работы
- Зачем нужна гидравлическая схема?
- Символы клапана — 1
- Как подобрать параметры
- Преимущества использования, свойства и характеристики
- Состав гидропривода на примере силовой головки агрегатного станка
- Купить или сделать своими руками?
- Принцип действия
- Применение
- Условные обозначения на гидравлических схемах, принятые в СССР
- Устройство промышленных систем
- Символы клапана – 2
Шестеренные
Роторные гидромашины этого вида нашли применение в системах смазки, дорожной и сельскохозяйственной спецтехнике, мобильных гидравлических конструкциях. К их плюсам относят:
- простоту конструктивного исполнения;
- работу на частотах до 5000 об/мин.;
- небольшой вес;
- компактность.
Заметные минусы:
- рабочее давление до 20 МПа;
- низкий КПД;
- небольшой ресурс;
- проблемы пульсации.
Рабочими вытесняющими элементами конструкции являются две шестерни. Они различаются по виду зацепления:
- Внешнее. Со стороны входа шестерни вращаются в разные стороны, захватывают жидкость впадинами зубьев и перемещают ее вдоль стенок корпуса к выходу из насоса. Когда зубья входят в зацепление, рабочая жидкость выталкивается из впадин к выходу из корпуса.
- Внутреннее. Принцип работы не меняется. Жидкость переносится в область нагнетания во впадинах между зубьями шестерни вдоль поверхности вспомогательного серпообразного разделителя. Пульсация давления и уровень шума в таких агрегатах снижаются.
Разновидностью рассматриваемой системы зацепления являются героторные (без разделителя, шестерни постоянно контактируют благодаря особому профилю зубьев) и винтовые конструкции.
Что такое гидравлический расчет
Гидравлический расчет делают только для крупных контуров обогрева.
Принцип работы водяной системы отопления заключается в том, что по трубам и батареям циркулирует теплоноситель. Это жидкость (вода или антифриз) которая нагревается в котле и потом прогоняется по всему контуру циркуляционным насосом или благодаря силе гравитации.
Теплоноситель во время циркуляции встречает гидравлическое сопротивление. Кроме этого, жидкость немного останавливается из-за трения об стенки труб. Гидравлический расчет систем отопления выполняется для того, чтобы вычислить оптимальное значение сопротивления контура, при котором скорость теплоносителя будет в пределах нормы (2-3 м/с для герметичного контура). По заключению вычислений мы узнаем следующие ключевые параметры:
- диаметр труб для контура;
- мощность циркуляционного насоса;
- количество оборотов для регулировки балансировочных клапанов на каждом радиаторе.
Независимо от того где выполнялся гидравлический расчет системы отопления, на онлайн калькуляторе или в Excel, его пользу сложно переоценить. Так как одним выстрелом мы убиваем двух зайцев: контур работает, как часы и нет перерасхода средств, ведь мы точно будем знать оптимальные параметры элементов системы.
Специалисты делают гидравлический расчет системы отопления в Excel таблице. Это очень сложный процесс, который под силу далеко не всем людям с профильным образованием, не говоря уже о дилетантах. Нужно разбираться в теплотехнике, гидравлике, знать основы монтажа и многое другое. Получить эти знания можно только в высшем учебном заведении. Есть специализированные программы для гидравлического расчета системы отопления. Но опять же работать с ними могут только люди, имеющие профильное образование.
Сфера использования
Широкое применение системы этого типа нашли:
- В промышленности. Очень часто гидравлика является элементом конструкции металлорежущих станков, оборудования, предназначенного для транспортировки продукции, ее погрузки/разгрузки и т. д.
- В авиакосмической отрасли. Подобные системы используются в разного рода средствах управления и шасси.
- В сельском хозяйстве. Именно через гидравлику обычно происходит управление навесным оборудованием тракторов и бульдозеров.
- В сфере грузоперевозок. В автомобилях часто устанавливается гидравлическая тормозная система.
- В судовом оборудовании. Гидравлика в данном случае используется в рулевом управлении, входит в конструктивную схему турбин.
Устройство и принцип работы
Гидрораспределители могут применяться при работе с различными типами жидкостей. Но чаще всего такой механизм можно встретить в гидравлических системах, для регулировки потока, уровня и давления масла.
Принцип работы электрораспределителя такой:
- На корпусе установлен электромагнит постоянного тока, который при включении воздействует на палец и толкатель, к которому крепится с помощью рычага.
- Толкатель воздействует на шариковый клапан, прижимая его к седлу;
- Такое положение позволяет гидродвигателю включиться в работу, вытесняя жидкость из рабочей емкости в сливную магистраль.
- Когда на электромагнит не поступает электричество, шариковый клапан прижимается к седлу.
- Из-за этого с рабочей емкостью соединяется с нагнетательной полостью, что приводит к обратному движению жидкости, которая возвращается в полость двигателя.
- Рабочая емкость закрывается обратным клапаном, который не позволяет жидкости двигаться в системе.
- Для работы распределителя не требуется большой мощности, так как вся система уравновешена. Усилие пружины, которая воздействует на шариковый клапан, примерно равняется давлению со стороны толкателя, в полость которого нагнетается рабочая жидкость. Из-за этого даже малейшего усилия электромагнита достаточно для изменения направления и распределения потоков жидкости.
Практически все модели распределителей работают по одному принципу. Отличия могут быть незначительные и зависят от конструкционных особенностей.
Зачем нужна гидравлическая схема?
Гидравлическая схема состоит из простых графических символов компонентов, органов управления и соединений. Рисование деталей стало более удобное, а символы универсальнее. Поэтому, при обучении каждый может понять обозначения системы. Гидравлическая схема обычно предпочтительна для объяснения устройства и поиска неисправностей.
Два рисунка показывают, что верхний является гидравлической схемой нижнего рисунка. Сравнивая два рисунка, заметьте, что гидравлическая схема не показывает особенности конструкции или взаимное расположение компонентов цепи. Назначение гидравлической схемы — показать назначение компонентов, места соединений и линии потоков.
Символы насоса
Основной символ насоса — это круг с чёрным треугольником, направленным от центра наружу. Напорная линия выходит из вершины треугольника, линия всасывания расположена напротив.
Таким образом, треугольник показывает направление потока.
Этот символ показывает насос постоянной производительности.
Насос переменной производительности обозначается на рисунке со стрелкой, проходящей через круг под углом 15°
Символы привода
Символ мотора
Символом мотора является круг с чёрными треугольниками, но вершина треугольника направлена к центру круга, чтобы показать, что мотор получает энергию давления.
Два треугольника используются для обозначения мотора с изменяемым потоком.
Мотор переменной производительности с изменением направления потока обозначается со стрелкой, проходящей через круг под углом 45°
Символы цилиндра
Символ цилиндра представляет прямоугольник, обозначающий корпус цилиндра (цилиндр) с линейным обозначением поршня и штока. Символ обозначает положение штока цилиндра в определённом положении.
Цилиндр двойного действия
Этот символ имеет закрытый цилиндр и имеет две подходящие линии, обозначенные на рисунке линиями.
Цилиндр однократного действия
К цилиндрам однократного действия подводится только одна линия, обозначенная на рисунке линией, противоположная сторона рисунка открыта.
Направление потока
Направление потока к и от привода (мотор с изменением направления потока или цилиндр двойного действия) изображается в зависимости от того, к какой линии подходит привод. Для обозначения потока используется стрелка.
Символы клапана — 1
1) Распределительный клапан
Основной символ распределительного клапана — это квадрат с выходными отверстиями и стрелкой внутри для обозначения направления потока. Обычно, распределительный клапан управляется за счёт баланса давления и пружины, поэтому на схеме мы указываем пружину с одной стороны и пилотную линию с другой стороны.
Обычно закрытый клапан
Обычно закрытый клапан, такой как предохранительный, обозначен стрелкой противовеса от отверстий напрямую к линии пилотного давления. Это показывает, что пружина удерживает клапан в закрытом состоянии до того, как давление не преодолеет сопротивление пружины. Мы мысленно проводим стрелку, соединяя поток от впускного к выпускному отверстию, когда давление возрастает до величины преодоления натяжения пружины.
Предохранительный клапан
На рисунке представлен предохранительный клапан с символом обычно закрытый, соединённый между напорной линией и баком. Когда давление в системе превышает натяжение пружины, масло уходит в бак.
Примечание:
Символ не указывает или это простой или это сложный предохранительный клапан
Это важно для указания их функций в цепи.. Рабочий процесс:
Рабочий процесс:
(а) Клапан всегда остаётся закрыт
(b) Когда давление появляется в главном контуре, тоже самое давление действует на клапан через пилотную линию и когда это давление преодолевает сопротивление пружины, клапан открывается и масло уходит в бак, тем самым снижая давление в главном контуре.
Обычно открытый клапан
Когда стрелка соединяет впускной и выпускной порты, значит клапан обычно открыт
. Клапан закрывается, когда давление преодолевает сопротивление пружины.
Клапан уменьшения давления обычно открыт и обозначается, как показано на рисунке ниже. Выпускное давление показано напротив пружины, чтобы устанавливать или прерывать поток, когда будет достигнута величина для сжатия пружины.
Рабочий процесс:
(а) Масло течёт от насоса в главный контур и А
(b) Когда выпускное давление клапана становится выше установленного давления, поток масла от насоса остановлен и давление в контуре А сохраняется. На него не действует давление главного контура.
(с) Когда давления в контуре А падает, клапан возвращается в состояние (а). Поэтому, давление в контуре А сохраняется, потому что охраняются условия (а) и (b)
Как подобрать параметры
Подбирается гидравлический разделитель с учетом максимально возможной скорости потока теплоносителя. Дело в том, что при высокой скорости движения жидкости по трубам она начинает шуметь. Чтобы не было этого эффекта, максимальная скорость принимается равной 0,2 м/с.
Параметры, нужные для гидроразделителя
По максимальному потоку теплоносителя
Чтобы рассчитать диаметр гидрострелки по этому методу, единственное, что нужно знать — это максимальный поток теплоносителя, который возможен в системе и диаметр патрубков. С патрубками все просто — вы же знаете, какой трубой будете делать разводку. Максимальный поток, который может обеспечить котел, мы знаем (есть в технических характеристиках), а расход по контурам зависит от их размера/объема и определяется при подборе контурных насосов. Расход на все контуры складывается, сравнивается с мощностью котлового насоса. Большая величина подставляется в формулу для расчета объема гидрострелки.
Формула расчета диаметра гидравлического разделителя для системы отопления в зависимости от максимального потока теплоносителя
Приведем пример. Пусть максимальный расход в системе 7,6 куб/час. Допустимая максимальная скорость берется стандартная — 0,2 м/с, диаметр патрубков 6,3 см (трубы на 2,5 дюйма). В этом случае получаем: 18,9 * √ 7,6/0,2 = 18,9 * √38 = 18,9 * 6,16 = 116,424 мм. Если округлить, получаем, что диаметр гидрострелки должен быть 116 мм.
По максимальной мощности котла
Второй способ — подбор гидравлической стрелки по мощности котла. Оценка будет приблизительной, но ей можно доверять. Нужна будет мощность котла и разница температур теплоносителя в подающем и обратном трубопроводе.
Расчет гидрострелки по мощности котла
Расчет также несложный. Пусть максимальная мощность котла — 50 кВт, дельта температур — 10°C, диаметры патрубков такие же — 6,3 см. Подставив цифры, получаем — 18,9 * √ 50 / 0,2 * 10 = 18,9 * √ 25 = 18,9* 5 = 94,5 мм. Округлив, получаем диаметр гидрострелки 95 мм.
Как найти длину гидрострелки
С диаметром гидроразделителя для отопления определились, но надо знать еще и длину. Ее подбирают в зависимости от диаметра подключаемых патрубков. Есть два вида гидрострелок для отопления — с отводами, расположенными один напротив другого и с чередующимися патрубками (располагаются со сдвигом один относительно другого).
Определяем длину гидрострелки из круглой трубы
Рассчитать длину в этом случае легко — в первом случае это 12d, во втором — 13d. Для средних систем можно и диаметр подобрать в зависимости от патрубков — 3*d. Как видите, ничего сложного. Рассчитать можно самостоятельно.
Преимущества использования, свойства и характеристики
Гидромасла обладают рядом свойств, отличающих их от прочих ГСМ. Прежде всего, это оптимальный показатель вязкости при широком диапазоне температур использования. Так, излишне текучая жидкость будет хуже передавать механическое усилие на движущиеся узлы, иметь склонность к протечкам через недостаточно герметизированные уплотнители. В то же время, слишком вязкое масло будет хуже смазывать механизмы, может застывать при отрицательных температурах.
Необходимые технические параметры достигаются благодаря сбалансированному комплексу следующих характеристик:
- Температурные показатели застывания и воспламенения жидкости;
- Вязкость, кинематическая и динамическая;
- Показатель кислотности;
- Уровень коррозийной защиты деталей;
- Содержание в общем объёме жидкости механических примесей и воды.
В качестве примера можно привести отечественное гидравлическое масло, относящееся по ГОСТу к группе А. Оно должно обладать следующими эксплуатационно-техническими характеристиками:
- Показатель вязкости при t в 100ºC, должен быть равен 6,5 сантистоксов, при 40 градусах — 45 сСт, при -20, не более 2100 сСт;
- Вспышка происходит при 175ºC;
- Застывать жидкость должна при температуре не выше -40;
- Процентное содержание взвешенных абразивных частиц – не более 1/100% от общего объёма;
- Вода в составе гидравлических ГСМ должна полностью отсутствовать.
К основным преимуществам гидравлических масел относятся отличная передача механического усилия по гидросистеме. Способность жидкости оказывать защитное воздействие на узлы и детали оборудования при работе в тяжёлых условиях, повышать сроки эксплуатации оборудования благодаря снижению износа.
Однако следует учитывать, что высокие эксплуатационные показатели достижимы лишь при условии правильного подбора класса масла для гидросистемы. Также следует отдавать предпочтение брендам, хорошо зарекомендовавшим себя на рынке ГСМ. Сегодня жидкости для гидравлики выпускаются всеми ведущими производителями ГСМ, как отечественными, так и иностранными.
Оригинальные немецкие автобаферы Power Guard
Средство для восстановления бурной потенции
Признайся в любви любимой девушке! Подари оригинальный кулон «Я люблю тебя» на 100 языках мира
Предыдущая
Гипоидное масло
Следующая
Тормозная жидкость
Состав гидропривода на примере силовой головки агрегатного станка
Гидравлическая система силовой головки агрегатного станка
В зависимости от способа изображения механизмов и аппаратуры на принципиальных схемах они могут быть полуконструктивные, полные и попереходные.
Гидравлическая система любого варианта имеет, по крайней мере, две основные магистрали — напорную и сливную. К ним подсоединяются трассы целевого назначения, которые связывают с магистралями гидродвигатели того или иного действия. Различают трассы: исходные, свободного движения, точного перемещения, нерегулируемых перемещений, управления и блокирования.
На рис. 244 показаны полуконструктивная, полная и попереходная схемы силовой головки агрегатного станка, осуществляющей за цикл работы три перехода: быстрый подвод, рабочий ход и быстрый отвод. На полуконструктивной схеме (рис. 244, а) при переходе «Быстрый подвод» оба золотника смещены толкающими электромагнитами: основной золотник 1 вправо, а золотник 2 ускоренных ходов влево. При таком их положении масло от насоса через первую слева шейку золотника 1 поступает во внештоковую полость цилиндра 5, а из противоположной полости того же цилиндра через шейку золотника 2 и вторую шейку золотника 1 направляется в бак.
При переходе «Рабочий ход» электромагнит золотника 2 отключается, что заставляет масло из штоковой полости цилиндра 3 проходить на слив через регулятор скорости 4 и затем через третью шейку золотника 1 в бак.
При переходе «Быстрый отвод» электромагнит золотника 1 отключается, а электромагнит золотника 2 снова включается, и этим изменяется направление потока масла: от насоса через вторую шейку золотника 1 в штоковую полость цилиндра, а из противоположной полости через первую шейку золотника 1 в бак. При положении «Стоп» оба электромагнита отключаются, золотники становятся в положение, показанное на схеме, и напорная магистраль от насоса через вторую шейку золотника 1, шейку золотника 2 и кольцевую выточку вокруг крайнего правого барабана золотника 1 соединяется с баком.
На полной принципиальной схеме (рис. 244, б) все элементы гидросистемы имеют аналогичные с полуконструктивной схемой обозначения, поэтому приведенное выше описание работы гидропривода можно использовать и в данном случае. Сравнивая схемы, можно видеть, что оформление второй схемы проще, и, кроме того, на ней наглядно показана функция золотников при их различных положениях.
На попереходных схемах (рис. 244, е) показаны те же элементы, и, кроме того, знаки « + » и « — » и стрелки различной длины позволяют уточнить действия электромагнитов и силового цилиндра. На самом деле, из рассмотрения схемы 1 следует, что оба электромагнита подключены, и масло из напорной магистрали НМ через одну шейку золотника 1 поступает во внештоковую полость цилиндра 3, а из противоположной полости сдирается через шейки золотников 2 и 1. Поршень передвигается в направлении «Шток вперед» ускоренно (длинная стрелка).
Из схемы II следует, что в этом переходе работает только золотник 1, который остается в прежнем положении, а отключение золотника 2 быстрых ходов подключает регулятор скорости 4, состоящий из редукционного клапана и дросселя. Поршень на этом переходе передвигается в том же направлении, но с рабочей скоростью (короткая стрелка). Из схемы III видно, что золотник 2 снова включен, а золотник 1 отключен, но принимает участие в этом переходе. При таком переключении золотников масло от магистрали НМ через шейки обоих золотников поступает в штоковую полость цилиндра, а из противоположной полости сливается через вторую шейку золотника 1. Поршень меняет свою скорость и направление. Из схемы IV следует, что оба золотника отключены, и напорная магистраль через их шейки соединена с баком, а следовательно, в этом положении даже при работающем насосе гидропривод выключен.
Купить или сделать своими руками?
Как говорили, готовая гидрострелка для отопления стоит немало — 200-300$ в зависимости от производителя. Чтобы снизить затраты, возникает закономерное желание сделать ее самостоятельно. Если варить умеете, никаких проблем — купили материалы и сделали. Но при этом надо учесть следующие моменты:
- Резьба на сгонах должна быть хорошо прорезанной и симметричной.
- Стенки отводов одинаковой толщины.
Качество самодельного изделия может быть «не очень»
Вроде, очевидные вещи. Но вы удивитесь, как сложно найти четыре нормальных сгона с нормально сделанной резьбой. Далее, все сварные швы должны быть качественными — система будет работать под давлением. Сгоны приварены строго перпендикулярно к поверхности, на нужном расстоянии. В общем, не такая простая это задача.
Если сами пользоваться сварочным аппаратом не умеете, придется искать исполнителя. Найти его совсем непросто: либо дорого просят за услуги, либо качество работы, мягко говоря, «не очень». В общем, многие решают купить гидрострелку, несмотря на немалую стоимость. Тем более, в последнее время, отечественные производители делают не хуже, но намного дешевле.
Принцип действия
Работает любая гидравлическая система по принципу обычного жидкостного рычага. Подаваемая внутрь такого узла рабочая среда (в большинстве случаев масло) создает одинаковое давление во всех его точках. Это означает то, что, приложив малое усилие на маленькой площади, можно выдержать значительную нагрузку на большой.
Далее рассмотрим принцип действия подобного устройства на примере такого узла, как гидравлическая тормозная система автомобиля. Конструкция последней довольно-таки проста. Схема ее включает в себя несколько цилиндров (главный тормозной, заполненный жидкостью, и вспомогательные). Все эти элементы соединены друг с другом трубками. При нажатии водителем на педаль поршень в главном цилиндре приходит в движение. В результате жидкость начинает перемещаться по трубкам и попадает в расположенные рядом с колесами вспомогательные цилиндры. После этого и срабатывает торможение.
Применение
Гидравлические масла используются во всех гидросистемах. К примеру, в автомобилях гидравлические жидкости обеспечивают надёжную работу следующих узлов:
- Гидроусилитель рулевого управления, рулевая рейка;
- Гидропневматический механизм подвески, амортизаторы;
- Механизмы и системы, предназначенные для обеспечения дополнительной безопасности и комфорта вождения – ABS, ASR, ASC;
- У автомобилей, выполненных в версии «кабриолет» – для подъёма/складывания крыши, в автобусах – для открывания пассажирских дверей;
- Гидротормоза;
- Различное навесное оборудование спецтехники – краны-манипуляторы, ковши, отвалы и т.д.
Между тем, различные виды масел могут предназначаться для разного оборудования. Чтобы правильно подобрать жидкость, следует внимательно ознакомиться с прилагаемой к оборудованию специализацией.
На основании рекомендации производителя и осуществляется выбор наиболее подходящего масла. Для удобства, гидромасла маркируются дополнительными буквенными обозначениями:
- ВМГЗ. Для оборудования, работающего под открытым небом, без защиты от осадков и перепадов температур. Это строительная, дорожная, лесозаготовительная техника.
- МГЕ. Для сельскохозяйственной техники, эксплуатируемой в условиях повышенной загрязнённости, запылённости, влажности.
- A. Используется для автоматических КПП и трансформаторах.
- P. Применяется в гидравлическом подъёмном оборудовании, в гидроусилителях руля автомобилей.
- АУП. Для передачи усилия в гидросистемах морской и речной техники, работающих в условиях постоянной повышенной влажности.
- АУ. Для гидросистем, эксплуатируемых в условиях больших перепадов температур, от -30 до +100ºC.
- ГГ. Создано специально для турборедукторов железнодорожных дизельных локомотивов.
- ЭШ. Используется в технике, где гидросистема работает под повышенным давлением. Например, в крупногабаритных карьерных экскаваторах. К слову, аббревиатура ЭШ расшифровывается как «экскаватор шагающий».
Условные обозначения на гидравлических схемах, принятые в СССР
Способ изображения магистралей в гидросистемах станков нестандартизирован — Наиболее удобным представляется следующий способ, принятый многими организациями и применяемый в технической литературе:
- магистрали, соединяющие различные аппараты, — толстыми сплошными линиями;
- магистрали, выполненные внутри аппаратов, — тонкими сплошными линиями;
- дренажные магистрали — тонкими штриховыми линиями — Условные обозначения аппаратов вычерчиваются контурными сплошными линиями нормальной толщины — Места соединения магистралей обозначаются чертой и точкой (поз — 43, рис — 4); пересечения без соединений следует выделять знаком обвода (поз — 44, рис — 4).
На рис — 4 приведены основные условные обозначения на гидравлических схемах, принятые в СССР:
Обозначения гидравлических схем
- общее обозначение нерегулируемого насоса без указания вида и типа;
- общее обозначение регулируемого насоса без указания вида и типа;
- насос лопастной (роторно-пластинчатый) двойного действия нерегулируемый типов Г12-2, Г14-2;
- насосы лопастные (роторно-пластинчатые) сдвоенные с различной производительностью;
- насос шестеренный нерегулируемый типа Г11-1;
- насос радиально-поршневой нерегулируемый;
- насос радиально-поршневой регулируемый типа ППР, НПМ, НПЧМ, НПД и НПС;
- насос и гидродвигатель аксиально-поршневые (с наклонной шайбой) нерегулируемые;
- насос и гидродвигатель аксиально-поршневые (с наклонной шайбой) регулируемые типов 11Д и 11P;
- общее обозначение нерегулируемого гидродвигателя без указания типа;
- общее обозначение регулируемого гидродвигателя без указания типа;
- гидроцилиндр плунжерный;
- гидроцилиндр телескопический;
- гидроцилиндр одностороннего действия;
- гидроцилиндр двустороннего действия;
- гидроцилиндр с двусторонним штоком;
- гидроцилиндр с дифференциальным штоком;
- гидроцилиндр одностороннего действия с возвратом поршня со штоком пружиной;
- серводвигатель (моментный гидроцилиндр);
- аппарат (основной символ);
- золотник типов Г73-2, БГ73-5 с управлением от электромагнита;
- золотник с ручным управлением типа Г74-1;
- золотник с управлениями от кулачка типа Г74-2;
- клапан обратный типа Г51-2;
- напорный золотник типа Г54-1;
- напорный золотник типа Г66-2 с обратным клапаном;
- двухходовой золотник тина Г74-3 с обратным клапаном;
- клапан предохранительный типа Г52-1 с переливным золотником;
- клапан редукционный типа Г57-1 с регулятором;
- кран четырехходовой, типа Г71-21;
- кран четырехходовой трехпозиционный типа 2Г71-21;
- кран трехходовой (трехканальный);
- кран двухходовой (проходной);
- демпфер (нерегулируемое сопротивление);
- дроссель (нерегулируемое сопротивление) типов Г77-1, Г77-3;
- дроссель с регулятором типов Г55-2, Г55-3;
- общее обозначение фильтра;
- фильтр пластинчатый;
- фильтр сетчатый;
- реле давления;
- гидроаккумулятор пневматический;
- манометр;
- соединение труб;
- пересечения труб без соединения;
- заглушка в трубопроводе;
- резервуар (бак);
- слив;
- дренаж.
Устройство промышленных систем
Гидравлический тормоз автомобиля — конструкция, как видите, довольно-таки простая. В промышленных машинах и механизмах используются жидкостные устройства посложнее. Конструкция у них может быть разной (в зависимости от сферы применения). Однако принципиальная схема гидравлической системы промышленного образца всегда одинакова. Обычно в нее включаются следующие элементы:
- Резервуар для жидкости с горловиной и вентилятором.
- Фильтр грубой очистки. Этот элемент предназначен для удаления из поступающей в систему жидкости разного рода механических примесей.
- Насос.
- Система управления.
- Рабочий цилиндр.
- Два фильтра тонкой очистки (на подающей и обратной линиях).
- Распределительный клапан. Этот элемент конструкции предназначен для направления жидкости к цилиндру или обратно в бак.
- Обратный и предохранительный клапаны.
Работа гидравлической системы промышленного оборудования также основывается на принципе жидкостного рычага. Под действием силы тяжести масло в такой системе попадает в насос. Далее оно направляется к распределительному клапану, а затем — к поршню цилиндра, создавая давление. Насос в таких системах предназначен не для всасывания жидкости, а лишь для перемещения ее объема. То есть давление создается не в результате его работы, а под нагрузкой от поршня. Ниже представлена принципиальная схема гидравлической системы.
Символы клапана – 2
2) РАСПРЕДЕЛИТЕЛЬНЫЙ КЛАПАН ПОТОКА
Обратный клапан
Обратный клапан открывается, чтобы дать двигаться маслу в одном направлении и закрывается, чтобы препятствовать движению масла в обратном направлении.
Золотниковый клапан
Символ распределительного золотникового клапана использует сложную закрытую систему, которая имеет отдельный прямоугольник для каждой позиции.
Клапан с четырьмя отверстиями
Обычно клапан с четырьмя отверстиями имеет два отделения, если этот клапан имеет две позиции или три отделения, если клапан имеет центральную позицию.
Символы управления рычагов
Символы управления рычагов отображают рычаг, педаль, механические органы управления или пилотной линии, расположены на краю отделения.