Как работает двигатель ванкеля

Где применяют роторно-поршневые двигатели?

Изначально, разработка роторно-поршневых двигателей велась для спортивных автомобилей. Ведь для гоночных автомобилей не столь важен большой ресурс, так как ремонт поршневых двигателей тоже требовался и после первого заезда.

В серийном производстве РПД устанавливался на автомобили немецкого производства. Это был седан представительского класса NSU Ro 80. Автомобиль для своего времени был достаточно современным, так как имел привлекательный дизайн и хорошие аэродинамические свойства. Однако, ввиду серьезных недостатков роторно-поршневых двигателей, связанных со слишком частым техническим обслуживанием, получил отрицательную оценку, в связи с чем, стал оснащаться обычными поршневыми двигателями. Это связано с тем, что двигатель приходил в негодность уже после 50 тысяч километров, что являлось малоэкономичным показателем.

В настоящее время роторно-поршневые двигатели изготавливают только два завода в мире – это ВАЗ (Россия) и Mazda (Япония).

Энергетическая ценность солярки и бензина

Дизельное топливо состоит из более тяжелых углеводородов, чем бензин. Меньший КПД бензиновой установки сравнительно с дизелем также заключаются в энергетической составляющей бензина и особенности его сгорания. Полное сгорание равного количества солярки и бензина даст больше тепла именно в первом случае. Тепло в дизельном ДВС более полноценно преобразуется в полезную механическую энергию. Получается, при сжигании одинакового количества топлива за единицу времени именно дизель выполнит больше работы.

Также стоит учитывать особенности впрыска и создание надлежащих условий для полноценного сгорания смеси. В дизель топливо подается отдельно от воздуха, впрыскивается не во впускной коллектор, а напрямую в цилиндр в самом конце такта сжатия. Результатом становится более высокая температура и максимально полноценное сгорание порции рабочей топливно-воздушной смеси.

Наверное, каждый задавался вопросом о КПД (Коэффициенте Полезного Действия) двигателя внутреннего сгорания. Ведь чем выше этот показатель, тем эффективнее работает силовой агрегат. Самым эффективным на данный момент времени считается электрический тип, его КПД может достигать до 90 – 95 %, а вот у моторов внутреннего сгорания, будь то дизель или бензин он мягко сказать, далек от идеала …

ОГЛАВЛЕНИЕ СТАТЬИ

Если честно, то современные варианты моторов намного эффективнее своих собратьев, которые были выпущены лет так 10 назад, и причин этому масса. Сами подумайте раньше вариант 1,6 литра, выдавал всего 60 – 70 л.с. А сейчас это значение может достигать 130 – 150 л.с. Это кропотливая работа над увеличением КПД, в который каждый «шажок» дается методом проб и ошибок. Однако давайте начнем с определения.

КПД двигателя внутреннего сгорания – это значение отношения двух величин, мощности которая подается на коленчатый вал двигателя к мощности получаемой поршнем, за счет давления газов, которые образовались путем воспламенения топлива.

Высокая токсичность выхлопов

Это еще один недостаток РПД. В сравнении с традиционными моторами, двигатель Ванкеля выделяет меньшее количество окислов азота, но во много раз больше углеводородов, что обусловлено неполным сгоранием топлива. Инженеры Mazda достаточно быстро нашли эффективное решение проблемы. Специалисты создали «термальный реактор». В нем происходит «дожигание» углеводородов. Mazda R 100 стала первым автомобилем, в котором был применен этот элемент. В 1968 была выпущена еще одна модель с «термальным реактором» — Familia Presto Rotary. Это авто, одно из немногих, сразу прошло достаточно жесткую экологическую проверку, выдвинутую США в 1970-м для импортируемых ТС.

Преимущества роторно-волнового двигателя:

– роторно-волновой двигатель имеет неограниченную мощность, малые габариты и вес (0.25-0.40 кг/кВт), высокую экономичность, свободу выбора топлива;

– рабочий процесс для камеры постоянного горения, позволяет, не останавливая двигатель, подавать в него любой вид жидкого, газообразного или даже твердого распыленного топлива;

– высокий ресурс по износу деталей и ресурсу двигателя в целом. В двигателе будут изнашиваться только подшипники, а для них ресурс в 30 – 40 тыс. рабочих часов не предел;

– роторно-волновой двигатель не имеет ограничений по ресурсу и числам оборотов из-за отсутствия уплотнительных элементов и, соответственно трения в проточной части;

– ротор вращается с постоянной угловой скоростью и уравновешивается;

– вместо клапанов, или окон, в конструкции используются каналы неограниченной пропускной способности для непрерывного поступления воздуха в рабочие отсеки двигателя;

– в РВД газовые силы, действующие на ротор, постоянны и непрерывны, что делает ненужной установку маховика, а в некоторых случаях и противовесов, применяемых для полного уравновешивания двигателя;

– расчетный индикаторный КПД простого цикла РВД в адиабатном исполнении и умеренной степени сжатия равной 15 со степенью расширения 36 составит – 51 %. Расход топлива в этом случае может составить 171 г/кВт, при удельном весе силовой установки 0,15 – 0,25 кг/кВт;

– расчетный механический КПД двигателя составляет – 97 %.

История создания роторного двигателя

Силовые агрегаты с ротором вместо поршневой группы получили устойчивое название «двигатель Ванкеля», по фамилии изобретателя. На самом деле в мире было разработано несколько типов роторных моторов, отличных от изобретения Ванкеля. Но первым в этой области еще в 1920-ых годах начал работать именно немецкий инженер Фридрих Ванкель.

Для двигателя требовались узлы и детали, производство которых возможно только с применением высоких технологий металлообработки, точнейшей подгонки, с чем в то время были определенные трудности. Поэтому быстро запустить изделие в серию сразу не получилось. К тому же началась Вторая мировая война, когда требовались не экспериментальные, а серийные проверенные изделия.

Работы над двигателем были завершены уже во Франции, куда попало оборудования из побежденной Германии, в 1957 году, в компании NSU под руководством инженера Вальтера Фройде.

Применение двигателя Ванкеля на Западе и в СССР

Первый роторный двигатель мощностью 57 л.с. был установлен в 1957 году на спорткар фирмы NSU «Спайдер». Спорткар развивал невероятные для того времени и такой мощности ДВС скорость – 150км/час.

Автомобиль NSU Spider

С 1963 года роторные двигатели стали использовать на серийных автомобилях для населения. Несколько лет их ставили на «Мерседесы», «Шевроле» и «Ситроены». Но двигатель показал ряд существенных недостатков. В результате производители вернулись к использованию классических, проверенных поршневых ДВС.

Настойчивее остальных оказались японские автопроизводители. Они использовали роторные ДВС на некоторых моделях «Мазда». Устранялись слабые места, увеличивался моторесурс до капремонта, снижалось потребление топлива. Однако по ряду причин и японцы вернулись к классическим ДВС . Последняя Мазда RX Spirit R с роторным двигателем сошла с конвейера в 2012 году.

В СССР первый роторный двигатель отечественного производства ставился в 1974 году на легендарную «копейку» – ВАЗ 2101.

Для его создания было организовано специальное конструкторское бюро. Прообразом служил двигатель Ванкеля. Было изготовлено около 50 опытных образцов с маркировкой ВАЗ 311. ВАЗы с ними не продавались населению, а поступили в распоряжение сотрудников ГАИ и КГБ в качестве служебных машин.

Поначалу «копейки» с этим силовым агрегатом вызывали восхищение своей мощью, динамикой разгона, низким шумом и плавностью хода. Но уже через год на ходу осталась только одна машина. Двигатели остальных вышли из строя. Основной причиной поломок стала ненадежность уплотнений, обеспечивающих герметизацию камер сгорания во время вспышки топлива.

Работы над отечественным роторным ДВС продолжались, и были созданы мощные двухсекционные ВАЗ 411 и 413 мощностью 120 и 140 л.с. “Жигули” с этими двигателями снова попали на службу в силовые структуры.

Затем были разработаны роторные двигатели ВАЗ 414 и 415. Это были более совершенные универсальные агрегаты. Их можно было ставить как на вазовские «восьмерки» и «девятки», так и на не менее популярные в то время «Москвичи» и «Волги».

Последняя разработка ВАЗ 415 так и не была использована. Ее предшественник, ВАЗ 414 с 1992 года ставился на популярной модели авто ВАЗ 2109 («Спутник», «Самара»).

«Девятки» с этими двигателями обладали необычными характеристиками. Разгон до 100 км/ч за 8 секунд, возможность длительной работы на предельно высоких оборотах. ВАЗ 414 потреблял меньше топлива (14-15 л на 100 км), чем предыдущие роторные ДВС (18-20 л на 100 км). Но все равно больше, чем поршневой мотор.

Однако и на ВАЗе роторные ДВС не смогли конкурировать с традиционными, и вскоре их использование было прекращено.

Автомобилей в такими двигателями сегодня не выпускают. Не исключено, что автопроизводители могут вести конструкторские работы в этом направлении без афиширования, втайне от конкурентов.

Преимущества

Какие достоинства имеет двигатель Ванкеля? Принцип работы мотора заключается в том, что реализация любого четырехтактного цикла осуществляется без использования механизма газораспределения. Благодаря этому значительно упрощается конструкция мотора. В обычном 4-тактном поршневом моторе примерно на тысячу элементов больше. Огромный интерес крупнейших автомобильных предприятий был вызван потенциалом конструкции. Несомненными преимуществами является простота производства, несложный ремонт двигателя, компактность и небольшой вес. Все это способствует улучшению управляемости машины, облегчает расположение трансмиссии.


3

Конструкция

Цикл двигателя Ванкеля: впуск (голубой), сжатие (зелёный), рабочий ход (красный), выпуск (жёлтый)

Роторно-поршневой двигатель

Установленный на валу ротор жёстко соединён с зубчатым колесом, которое входит в зацепление с неподвижной шестернёй — статором. Диаметр ротора намного превышает диаметр статора, несмотря на это ротор с зубчатым колесом обкатывается вокруг шестерни. Каждая из вершин трёхгранного ротора совершает движение по эпитрохоидальной поверхности цилиндра и отсекают переменные объёмы камер в цилиндре с помощью трёх радиальных уплотнений.

Такая конструкция позволяет осуществить любой 4-тактный цикл Дизеля, Стирлинга или Отто без применения специального механизма газораспределения. Герметизация камер обеспечивается радиальными и торцевыми уплотнительными пластинами, прижимаемыми к цилиндру центробежными силами, давлением газа и ленточными пружинами. Отсутствие механизма газораспределения делает двигатель значительно проще четырёхтактного поршневого, а отсутствие сопряжения (картерное пространство, коленвал и шатуны) между отдельными рабочими камерами обеспечивают необычайную компактность и высокую удельную мощность. За один оборот эксцентрикового вала двигатель выполняет один рабочий цикл, что эквивалентно работе двухтактного поршневого двигателя. За один оборот ротора эксцентриковый вал выполняет 3 оборота и 3 рабочих хода, что приводит к ошибочным сравнениям роторного двигателя с шестицилиндровым поршневым двигателем.

Смесеобразование, зажигание, смазка, охлаждение, запуск принципиально такие же, как и у обычного поршневого двигателя внутреннего сгорания.

Практическое применение получили двигатели с трёхгранными роторами, с отношением радиусов шестерни и зубчатого колеса: R:r = 2:3, которые устанавливают на автомобилях, лодках и т. п.

Автомобили с РПД потребляют от 7 до 20 литров топлива на 100 км, в зависимости от режима движения, масла — от 0,4 л до 1 л на 1000 км.

Рабочий цикл

Двигатель Ванкеля использует четырёхтактный цикл:

  • такт A: Топливно-воздушная смесь через впускное окно поступает в камеру двигателя
  • такт B: Ротор вращается и сжимает смесь, смесь воспламеняется электрической искрой
  • такт C: Продукты горения давят на поверхность ротора, передавая усилия на цилиндрический эксцентрик
  • такт D: Вращающийся ротор вытесняет отработанные газы в выпускное окно.

Несмотря на схожесть цикла, динамика сгорания топливно-воздушной смеси в роторно-поршневом двигателе (РПД) сильно отличается от традиционного поршневого двигателя.

В поршневом двигателе (ПД) топливно-воздушный заряд, проходя в цилиндр через клапан на стадии впуска, приобретает высокую турбулентность, которая возрастает с ростом числа оборотов коленчатого вала, что благоприятно сказывается на полноте сгорания смеси. В РПД турбулентность ниже и в момент воспламенения, основной заряд смеси впереди по вращению ротора быстро сгорает, в то время как задняя часть рабочей полости остается не сгоревшей и выбрасывается в атмосферу. Этим объясняется в 6 — 8 раз более высокий процент выбосов в атмосферу несгоревших углеводородов, по сравнению с поршневыми двигателями.

Еще одним отличием рабочего цикла РПД от рабочего цикла ПД является сдвиг момента максимального выделения тепла в камере сгорания на линию расширения после прохождения верхней мертвой точки. Поэтому максимальные температуры цикла, при одинаковой степени сжатия, у РПД ниже, а в фазе выпуска температура отработавших газов на 200 — 250 °С выше чем у поршневых двигателей. Это термодинамически невыгодно и приводит к дополнительному снижению КПД, но в тоже время, по этой причине выброс окиси азота у РПД на 20% ниже, а при одинаковых степенях сжатия, РПД способен работать без детонации на топливе с октановым числом на 15 единиц меньше чем поршневой двигатель.

Устранение недостатков РПД добиваются усложнением систем впрыска, созданием расслоения топливно-воздушной смеси в камере сгорания и т.п.

Классификации

По источнику энергии

Двигатели могут использовать следующие типы источников энергии:

  • электрические;
    • постоянного тока (электродвигатель постоянного тока);
    • переменного тока (синхронные и асинхронные);
  • электростатические;
  • химические;
  • ядерные;
  • гравитационные;
  • пневматические;
  • гидравлические;
  • лазерные.

По типам движения

Получаемую энергию двигатели могут преобразовывать к следующим типам движения:

  • вращательное движение твёрдых тел;
  • поступательное движение твёрдых тел;
  • возвратно-поступательное движение твёрдых тел;
  • движение реактивной струи;
  • другие виды движения.

Электродвигатели, обеспечивающие поступательное и/или возвратно-поступательное движение твёрдого тела;

  • линейные;
  • индукционные;
  • пьезоэлектрические.

Некоторые типы электроракетных двигателей:

  • ионные двигатели;
  • стационарные плазменные двигатели;
  • двигатели с анодным слоем;
  • радиоионизационные двигатели;
  • коллоидные двигатели;
  • электромагнитные двигатели и др.

По устройству

Двигатели внешнего сгорания — класс двигателей, где источник тепла или процесс сгорания топлива отделены от рабочего тела:

  • поршневые паровые двигатели;
  • паровые турбины;
  • двигатели Стирлинга;
  • паровой двигатель.

Двигатели внутреннего сгорания — класс двигателей, у которых образование рабочего тела и подвод к нему тепла объединены в одном процессе и происходят в одном технологическом объеме:

  • двигатели с герметично запираемыми рабочими камерами (поршневые и роторные ДВС);
  • двигатели с камерами, откуда рабочее тело имеет свободный выход в атмосферу (газовые турбины).

По типу движения главного рабочего органа ДВС с запираемыми рабочими камерами делятся на ДВС с возвратно-поступательным движением (поршневые) (делятся на тронковые и крецкопфные) и ДВС с вращательным движением (роторные), которые по видам вращательного движения делятся на 7 различных типов конструкций. По типу поджига рабочей смеси ДВС с герметично запираемыми камерами делятся на двигатели с принудительным электрическим поджиганием (калильным или искровым) и двигатели с зажиганием рабочей смеси от сжатия (дизель).

По типу смесеобразования ДВС делятся на: с внешним смесеобразованием (карбюраторные) и с непосредственным впрыском топлива в цилиндры или впускной коллектор (инжекторные). По типу применяемого топлива различают ДВС работающие на бензине, сжиженном или сжатом природном газе, на спирте (метаноле) и пр.

Реактивные двигатели

Воздушно-реактивные двигатели:

  • прямоточные реактивные (ПВРД);
  • пульсирующие реактивные (ПуВРД);
  • газотурбинные двигатели:
    • турбореактивные (ТРД);
    • двухконтурные (ТРДД);
    • турбовинтовые (ТВД);
    • турбовинтовентиляторные ТВВД;

Ракетные двигатели

  • жидкостные ракетные двигатели;
  • твердотопливные ракетные двигатели;
  • ядерные ракетные двигатели;
  • некоторые типы электроракетных двигателей.

По применению

В связи с принципиально различными требованиями к двигателю в зависимости от его назначения, двигатели идентичные по принципу действия, могут называться «корабельными», «авиационными», «автомобильными» и тому подобными.

Категория «Двигатели» в патентоведении одна из наиболее активно пополняемых. В год по всему миру подаётся от 20 до 50 заявок в этом классе. Часть из них отличаются принципиальной новизной, часть — новым соотношением известных элементов. Новые же по конструкции двигатели появляются очень редко.

Автомобили с роторным двигателем

Первым серийным автомобилем с роторным мотором стал NSU Spider, а мировую славу Ванкелю принесла модель NSU Ro80. Автомобиль вышел в серию в 1967 году, а тираж ограничился 38 000 экземплярами. Тем не менее автомобиль установил новые стандарты в классе седанов с точки зрения дизайна и показывал отличные технические характеристики.

На него установили двухсекционный литровый роторный мотор, который выкручивал 115 лошадей, а максималка у автомобиля была за 180 км/ч. До сотни NSU разгонялся за 12 секунд. Все бы хорошо, но в эксплуатации автомобиля сквозило слишком много недостатков:

  1. Камера сгорания имела серповидную форму, вследствие чего плохо проветривалась, а это влияло на расход и на частые перегревы мотора.
  2.  Постоянно работающая камера сгорания не остывала во время работы, а только накалялась, в результате чего материалы цилиндра просто не выдерживали термической нагрузки.
  3. Уплотнители создавали конструкторам большие проблемы, но еще большие проблемы они начертили экологам, потому что масло, которое необходимо для смазки стенок камеры сгорания не выгорало, существенно загрязняя выхлоп.
  4. Роторный двигатель не может работать на дизельном топливе. Слишком большие нагрузки.

Недостатки РПД: недолговечность и ненадежность

Наряду с достоинствами, роторные двигатели обладали и существенными минусами. В первую очередь, они были очень недолговечными. Так, одна из первых моделей РПД в ходе испытаний выработала весь ресурс за 2 часа. Более успешный прототип смог выдержать 100 часов. Однако это не обеспечивало нормальной эксплуатации машины. Главная проблема состояла в неравномерности износа внутренней поверхности камеры. В ходе работы на ней образовывались поперечные борозды. Они получили весьма красноречивое название: «метки дьявола». После получения лицензии компания Mazda сформировала специальный отдел, который занимался усовершенствованием мотора. Вскоре выяснилось, что в процессе вращения ротора заглушки, расположенные на его вершинах, начинают вибрировать. Из-за этого и появляются эти борозды. Сегодня проблема долговечности и надежности решена. Для этого в производстве используется высококачественное покрытие, в том числе и керамическое.

Конструкция

Чтобы понять принцип работы, следует разобраться, какова конструкция роторного двигателя. Итак, вместо поршней энергия сгорания топлива у такого силового агрегата воспринимается ротором. Ротор имеет вид равностороннего треугольника. Каждая сторона этого треугольника и играет роль поршня.

Ротор

Чтобы обеспечить процесс горения, ротор помещается в закрытое пространство, состоящее из трех элементов – двух боковых корпусов, и одного центрального, называющегося статором. Пространство, в котором производится процесс горения, сделано в статоре, боковые корпуса обеспечивают только герметичность этого пространства.

Внутри статора сделан цилиндр, в котором и размещается ротор. Чтобы внутри этого цилиндра происходили все необходимые процессы, выполнен он в виде овала, с немного прижатыми боками.

Сам статор с одной стороны имеет окна для впуска топливовоздушной смеси или воздуха, и выпуска отработанных газов. Противоположно им сделано отверстие под свечи зажигания.

Устройство двигателя

Особенностью движения ротора в цилиндре статора является то, что его вершины постоянно контактируют с поверхностью цилиндра, его движение сделано по эксцентриковому типу. Он не только вращается вокруг своей оси, но еще и смещается относительно нее.

Для этого в роторе сделано большое отверстие, с одной стороны этого отверстия имеется зубчатый сектор. С другой стороны в ротор вставлен вал с эксцентриком.

Чтобы обеспечить вращение в боковой корпус установлена неподвижная шестерня, входящая в зацепление с зубчатым сектором ротора, она является опорной точкой для него. При своем эксцентриковом движении он опирается на неподвижную шестерню, а зацепление обеспечивает ему вращательное движение. Вращаясь, он обеспечивает и вращение вала с эксцентриком, на который он одет.

Что такое двигатель Ванкеля?

Как выглядит двигатель Ванкеля в разрезе.

Из курса физики средней школы все прекрасно помнят, что работа четырёхтактного двигателя внутреннего сгорания состоит из:

  • впуска топлива/воздуха;
  • сжатия, где их смесь становится единым целым, а затем воспламенения искрой свечи зажигания;
  • рабочего хода: поршень движется в обратном направлении, совершая полезную работу;
  • выпуска: остатки отработанной смеси выбрасываются из мотора.

И всё помнят наглядное учебное пособие: цилиндр бензинового мотора в разрезе, на котором отлично видно все стадии при вращении ручки. Но, не все существующие/используемые в настоящее время двигатели имеют одинаковое устройство. Кроме всем известного классического ДВС есть и другие варианты конструкции.

Яркий пример — роторно-поршневой двигатель Ванкеля. Данная конструкция ДВС была разработана в 1957 году сотрудником компании NSU Вальтером Фройде в соавторстве с Феликсом Ванкелем.

Отличительная черта этого двигателя — использование трёхгранного ротора, имеющего форму треугольника Рёло, вращающегося внутри цилиндра особого профиля, поверхность которого выполнена по эпитрохоиде.

Конструктивные особенности двигателя Ванкеля

Теоретическая форма ротора РПД Ванкеля между фиксированными углами является итогом уменьшения объёма геометрической камеры сгорания и увеличения степени сжатия. Симметричная кривая, соединяющая две произвольные вершины ротора, максимальна в направлении внутренней формы корпуса.

Центральный приводной вал, называемый «эксцентриковый» или «E-вал», проходит через центр ротора и поддерживается неподвижными подшипниками. Ролики движутся на эксцентриках (аналогично шатунам), встроенным в эксцентриковый вал (аналогично коленчатому). Роторы вращаются вокруг эксцентриков и совершают орбитальные обороты вокруг эксцентрикового вала.

Вращательное движение каждого ротора на собственной оси вызвано и регулируется парой синхронизирующих передач. Фиксированная шестерня, установленная на одной стороне корпуса ротора, входит в кольцевую шестерню, прикреплённую к ротору, и обеспечивает то, что ротор движется ровно на 1/3 оборота для каждого оборота эксцентрикового вала. Выходная мощность двигателя не передаётся через синхронизаторы. Сила давления газа на роторе (в первом приближении) идёт прямо в центр эксцентриковой части выходного вала.

РПД Ванкеля фактически представляет собой систему прогрессивных полостей переменного объёма. Таким образом, на корпусе имеется три полости, все повторяющие один и тот же цикл. Когда ротор вращается орбитально, каждая его сторона приближается, а затем удаляется от стенки корпуса, сжимая и расширяя камеру сгорания, подобно ходу поршня в двигателе. Вектор мощности ступени сгорания проходит через центр смещённой лопасти.

Двигатели Wankel, как правило, способны достичь гораздо более высоких оборотов, чем те, что с аналогичной выходной мощностью. Это связано с гладкостью, присущей круговому движению, и отсутствием сильно напряжённых частей, таких, как коленчатые и распределительные валы, или шатуны. Эксцентриковые валы не имеют ориентированных по напряжению контуров коленчатых.

https://youtube.com/watch?v=YopoTlhnkDw

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector