Термодинамические циклы двигателей

Примечания

  1. . www.cogeneration.com.ua. Дата обращения: 23 февраля 2020.
  2. . techautoport.ru. Дата обращения: 15 января 2020.
  3. . vdvizhke.ru. Дата обращения: 15 июля 2019.
  4. . Дата обращения: 25 июля 2019.
  5. . Studref. Дата обращения: 25 июля 2019.
  6. . docs.cntd.ru. Дата обращения: 30 июля 2019.
  7. . docs.cntd.ru. Дата обращения: 15 января 2020.
  8. . auto-gl.ru. Дата обращения: 15 января 2020.
  9. . wiki.zr.ru. Дата обращения: 11 февраля 2020.
  10. . stroy-technics.ru. Дата обращения: 11 февраля 2020.
  11. ↑ . www.science-education.ru. Дата обращения: 11 февраля 2020.
  12. . www.korabel.ru. Дата обращения: 11 февраля 2020.
  13. . mash-xxl.info. Дата обращения: 11 февраля 2020.
  14. . mash-xxl.info. Дата обращения: 11 февраля 2020.
  15. Хиллиард Д., Спринглер Дж. Топливная экономичность автомобилей с бензиновыми двигателями. — Москва: Машиностроение, 1988. — С. 209—268. — 509 с.
  16. Хиллиард Д., Спринглер Дж. Топливная экономичность автомобилей с бензиновыми двигателями. — Москва: Машиностроение, 1988. — С. 252—268. — 509 с.
  17. . Дата обращения: 25 июля 2019.

Преимущества четырёхтактных двигателей:

В отличие от двухтактного двигателя, в котором смазка коленвала, подшипников коленвала, компрессионных колец, поршня, пальца поршня и цилиндра осуществляется благодаря добавлению масла в топливо; коленвал четырехтактного двигателя находится в масляной ванне. Благодаря этому нет необходимости смешивать бензин с маслом или доливать масло в специальный бачок. Достаточно залить чистый бензин в топливный бак и можно ехать, при этом отпадает необходимость покупки специального масла для 2-тактных двигателей.

Так же на зеркале поршня и стенках глушителя и выхлопной трубы образуется значительно меньше нагара. К тому же, в 2-тактном двигателе происходит выброс топливной смеси в выхлопную трубу, что объясняется его конструкцией.

Особенности работы двухтактных моторов

Основой того, чем отличается двухтактный двигатель от четырехтактного, можно назвать тот факт, что в первом за один рабочий цикл коленвал совершает два оборота, а во втором весь рабочий цикл укладывается в один оборот коленвала (360°). Поршень при этом совершает лишь два хода. Процессы, происходящие в камере сгорания в течение рабочего цикла у двухтактного мотора, не отличаются от четырехтактных, но впуск горючей смеси и выпуск отработавших газов выполняются одновременно с тактами сжатия и расширения.

Рабочий цикл двухтактного двигателя

Принцип работы простейшего двухтактного двигателя заключается в следующем:

  1. Такт сжатия. В начале цикла поршень находится в НМТ и движется в положение ВМТ такта сжатия. При этом происходит перекрытие окна продувки (впуска), а затем канала выпуска. В момент, когда поршень закрывает окно выпуска, начинается сжатие горючей смеси, и в пространстве под поршнем возникает разрежение. Это обеспечивает нагнетание топлива в камеру через приоткрытый клапан впуска.
  2. Такт расширения (рабочего хода). Когда поршень приближается к ВМТ, происходит срабатывание свечи зажигания, и горючая смесь воспламеняется. Это провоцирует резкое повышение давления и температуры, в результате чего поршень начинает движение вниз. Таким образом, газы совершают полезную работу, а поршень при движении к НМТ увеличивает компрессию топливовоздушной смеси. С ростом давления клапан начинает закрываться и препятствует попаданию горючей смеси во впускной коллектор. При достижении поршнем выпускного окна, происходит открытие последнего, и отработавшие газы удаляются в систему выхлопа. Давление в камере снижается, а дальнейшее движение поршня открывает канал продувки и топливовоздушная смесь подается в камеру, вытесняя отработавшие газы.

В зависимости от того, как реализована система продувки в устройстве двухтактного двигателя, их разделяют на разные типы:

  • С контурной кривошипно-камерной продувкой. Горючая смесь подается в камеру цилиндра напрямую из картера двигателя. При этом она всасывается в момент движения поршня к ВМТ, а при движении поршня к НМТ обеспечивается продувка за счет избыточного давления.
  • С клапанно-щелевой продувкой. Применяется для одноцилиндровых двигателей. Газораспределение реализуется путем перекрытия окон, выполненных в стенке цилиндра.
  • С прямоточной продувкой. В такой конструкции впуск выполняется через специальные продувочные окна, выполненные по окружности цилиндра в его нижней части. В свою очередь, выпуск реализуется через выхлопной клапан.
  • С использованием продувочных насосов. Применяется на многоцилиндровых двухтактных двигателях. При этом воздух для продувки сжимается специальным компрессором.

В отличие от четырехтактного, двухтактный двигатель не имеет системы газораспределения. Не требуют такие конструкции и организации сложной системы смазки. С другой стороны, четырехтактные моторы более экономичны по расходу топлива, а также меньше подвержены вибрации и обеспечивают более чистый выхлоп.

Топливоподкачивающий насос

Основной топливоподкачавающий насос обеспечивает бесперебойную подачу топлива из баков к ТНВД при работающем двигателе. Он обычно приводится в действие от коленчатого или распределительного вала двигателя. Может применяться и автономный электродвигатель, питаемый от генератора ТС. Использование электропривода обеспечивает равномерную подачу топлива независимо от частоты вращения коленчатого вала и возможность аварийного отключения всей системы. Существуют различные конструкции топливоподкачивающих насосов. Они могут быть:

  • шестеренными
  • плунжерными (поршневыми)
  • коловратными (пластинчатого типа)

Как правило, применяются плунжерные и коловратное насосы.

Плунжерный топливоподкачивающий насос

Плунжерный топливоподкачивающий насос состоит из корпуса 5, плунжера 7 с пружиной 6, толкателя 10 с роликом 77, пружиной 9 и штоком 8, а также клапанов — впускного 4 и нагнетательного 1 с пружинами. Толкатель с плунжером могут перемещаться вверх-вниз. Перемещение вверх происходит при повороте эксцентрика 72, изготовленного как одно целое с кулачковым валом ТНВД; перемещение вниз обеспечивают пружины 6 и 9.

При сбегании выступа эксцентрика с ролика толкателя плунжер под действием пружины б перемещается вниз, вытесняя топливо, находящееся под ним, в нагнетательную магистраль насоса. В это время нагнетательный клапан закрыт, а впускной под действием разрежения над плунжером открыт, и топливо поступает из впускной магистрали в надплунжерную полость. При движении толкателя и плунжера вверх впускной клапан закрывается под действием давления топлива, а нагнетательный, наоборот, открывается, и топливо из надплунжерной полости поступает в нижнюю камеру под плунжером. Таким образом, нагнетание топлива происходит только при движении плунжера вниз.

Если подачу топлива в цилиндры двигателя уменьшают, в выпускном трубопроводе насоса, а значит, и в полости под плунжером давление возрастает. В этом случае плунжер не может опуститься вниз даже под действием пружины 6, и толкатель со штоком перемещается вхолостую. По мере расходования топлива давление в нагнетательной полости понижается, и плунжер под действием пружины 6 опять начинает перемещаться вниз, обеспечивая подачу топлива.

Плунжерный топливоподкачивающий насос обычно совмещен с насосом 2 ручной подкачки топлива. Данный насос устанавливается на входе в основной топливоподкачивающий насос и приводится в действие вручную за счет перемещения поршня 3 со штоком. При движении поршня вверх под ним образуется разрежение, открывается впускной клапан, и топливо заполняет подплунжерное пространство. При перемещении поршня вниз впускной клапан закрывается, а нагнетательный открывается, позволяя топливу пройти далее по топливной магистрали.

Коловратный топливоподкачивающий насос

В мощных быстроходных дизелях применяются в основном коловратные топливоподкачивающие насосы. Ротор 7 насоса приводится во вращение от коленчатого вала двигателя. В роторе имеются прорези, в которые вставлены пластины 6. Одним (наружным) концом пластины скользят по внутренней поверхности направляющего стакана 8, а другим (внутренним) — по окружности плавающего пальца 5, расположенного эксцентрически относительно оси ротора. При этом они то выдвигаются из ротора, то вдвигаются в него. Ротор и пластины делят внутреннюю полость направляющего стакана на камеры А, Б и В, объемы которых при вращении ротора непрерывно меняются. Объем камеры А увеличивается, поэтому в ней создается разрежение, под действием которого топливо засасывается из впускной магистрали. Объем камеры В уменьшается, давление в ней повышается, и топливо вытесняется в нагнетательную полость насоса. Топливо, находящееся в камере Б, переходит от входного отверстия стакана к выходному. При повышении давления в нагнетательной полости до определенного уровня открывается редукционный клапан 2, преодолевая усилие пружины 7, и излишек топлива перепускается обратно во впускную полость насоса. Поэтому в нагнетательной полости и выпускном трубопроводе поддерживается постоянное давление. Перед пуском, когда двигатель и, следовательно, основной топливоподкачивающий насос не работают, топливо через него может прокачиваться предпусковым топливоподкачивающим насосом. В этом случае открывается перепускной клапан 3, преодолевая усилие пружины 4. В закрытом положении тарелка этого клапана перекрывает отверстия в тарелке редукционного клапана.

Приложения

Электрика и электроника

В электронике рабочий цикл — это процентное отношение длительности импульса или ширины импульса (PW) к общему периоду (T) сигнала. Обычно он используется для обозначения длительности импульса, когда он высокий (1). В цифровой электронике используются сигналы прямоугольной формы, которые представлены логической 1 и логическим 0. Логическая 1 означает наличие электрического импульса, а 0 — отсутствие электрического импульса. Например, сигнал (10101010) имеет рабочий цикл 50%, потому что импульс остается высоким в течение 1/2 периода или низким в течение 1/2 периода. Точно так же для импульса (1000–1000) рабочий цикл будет 25%, потому что импульс остается высоким только в течение 1/4 периода и остается низким в течение 3/4 периода. Электродвигатели обычно используют рабочий цикл менее 100%. Например, если двигатель работает одну из 100 секунд или 1/100 времени, то его рабочий цикл составляет 1/100 или 1 процент.

Широтно-импульсная модуляция (ШИМ) используется в различных электронных ситуациях, таких как подача мощности и регулирование напряжения.

В электронной музыке музыкальные синтезаторы изменяют рабочий цикл своих генераторов звуковой частоты, чтобы получить тонкий эффект на цветах тона . Этот метод известен как широтно-импульсная модуляция.

В индустрии принтеров / копировальных аппаратов спецификация рабочего цикла относится к номинальной пропускной способности (т. Е. Напечатанных страниц) устройства в месяц.

В источнике питания для сварки максимальный рабочий цикл определяется как процент времени в 10-минутном периоде, в течение которого он может работать непрерывно до перегрева.

Биологические системы

Понятие рабочих циклов также используется для описания активности нейронов и мышечных волокон . В нейронных цепях, например, рабочий цикл конкретно относится к той части периода цикла, в которой нейрон остается активным.

Поколение

Один из способов генерации достаточно точных прямоугольных сигналов с коэффициентом заполнения 1 / n , где n — целое число, заключается в изменении рабочего цикла до тех пор, пока n- я гармоника не будет значительно подавлена. Для сигналов звукового диапазона это можно сделать даже «на слух»; например, снижение на -40 дБ в 3-й гармонике соответствует установке коэффициента заполнения на 1/3 с точностью до 1%, а снижение на -60 дБ соответствует точности 0,1%.

Отношение отметки к пробелу

Отношение отметки к интервалу или отношение отметки к интервалу — это еще один термин для той же концепции, чтобы описать временные отношения между двумя чередующимися периодами формы волны. Однако, в то время как рабочий цикл связывает продолжительность одного периода с продолжительностью всего цикла, соотношение между метками и пространством связывает длительности двух отдельных периодов:

Соотношение пространства меткизнак равнопWоппWожж{\ displaystyle {\ text {Mark Space Ratio}} = {\ frac {PW_ {on}} {PW_ {off}}}}

где и — длительности двух чередующихся периодов.
пWоп{\ displaystyle PW_ {on}}пWожж{\ displaystyle PW_ {off}}

1.1 Основные понятия

На
современных колесных и гусеничных
машинах установлены поршневые двигатели
внутреннего сгорания. В основу действия
таких двигателей положено свойство
газов расширяться при нагревании.

Двигатель
– это машина, преобразующая какой-либо
вид энергии в энергию, расходуемую на
механическую работу. Двигатели
классифицируют по следующим основным
признакам:


по способу воспламенения горючей смеси
– воспламенением от сжатия (дизели) и
принудительным от электрической искры
(карбюраторные);


по способу смесеобразования (с внешним
– карбюраторные и газовые; с внутренним
– дизели);


по способу осуществления рабочего цикла
– четырехтактные и двухтактные;


по виду применяемого топлива (бензиновые,
газовые и дизели);


по числу цилиндров – одно- и многоцилиндровые;


по способу охлаждения (с воздушным
жидкостным охлаждением);


по расположению цилиндров – однорядные,
двухрядные и V-образные.

Чтобы
понять принцип работы дизеля, рассмотрим
его упрощенную схему (рис. 1а). В цилиндр
6 закрытый головкой 1, плотно вставлен
поршень 7, который при помощи пальца 8 и
шатуна 9 соединен с коленчатым валом
12, имеющим на одном конце тяжелое колесо
– маховик 10, который необходим для
равномерности вращения вала при работе
двигателя. В головке цилиндра имеются
впускное и выпускное окна и клапаны 4 и
5. В точно определенные моменты они
открываются и закрываются при помощи
распределительного механизма, в которой
кроме клапанов входят кулачковый вал
14, передаточные детали 16 и распределительные
шестерни 13. Топливо (горючая смесь) в
цилиндр поступает через форсунку 3 от
топливного насоса.

Горючая
смесь

– это смесь, состоящая из распыленного
топлива с воздухом в определенной 
пропорции.

Рабочая
смесь

образуется в цилиндре работающего
двигателя в результате перемешивания
горючей смеси с остаточными газами.

Верхняя
мертвая точка (в.м.т.)

– это крайнее верхнее положение поршня,
когда ось поршневого пальца находится
от оси коленчатого вала на наибольшем
удалении (рис. 1б).

Нижняя
мертвая точка (н.м.т.)

это крайнее нижнее положение поршня,
когда ось поршневого пальца находится
от оси коленчатого вала на наименьшем
удалении (рис. 1в).

1
– головка цилиндра; 2 – коромысло; 3 –
форсунка; 4 – выпускной клапан; 5 –
впускной клапан; 6 – цилиндр; 7 – поршень;
8 – поршневой палец; 9 – шатун; 10 –
маховик; 11 – картер; 12 – коленчатый вал;
 13 – шестерня привода распределительного
вала; 14 – распределительный вал; 15 –
топливный насос; 16 – передаточные
детали; 17 – воздухоочиститель.

Рисунок
1 — Схема одноцилиндрового дизеля.

Рабочий
ход поршня

– это расстояние, пройденное поршнем
им от одной мертвой точки до другой. За
каждый ход поршня коленчатый вал
поворачивается на половину оборота.

Объем
камеры сгорания (сжатия)
Vc
– это пространство над поршнем, когда
он находится в в.м.т.

Рабочий
объем цилиндра

– объем цилиндра, освобождаемый поршнем
при перемещении от в.м.т. до н.м.т.:

                                                                       
(1)

где 
Vh
– рабочий объем цилиндра;

        
d
– диаметр цилиндра;

        S
– рабочий ход поршня.

Литраж
– это рабочий объем всех цилиндров,
выраженный в литрах.

Полный
объем цилиндра
Vа
– это сумма объема камеры сгорания и
рабочего объема цилиндра, т.е. пространство
над поршнем, когда он находится в н.м.т.

                                                             
(2)

Степень
сжатия – это число, показывающее, во
сколько раз полный объем цилиндра больше
объема камеры сгорания.

                                                                      
(3)

В
современных карбюраторных двигателях
степень сжатия колеблется в пределах
8…10, а в дизелях достигает 15…20.

Такт
– часть рабочего цикла, происходящая
за время движения поршня от одной мертвой
точки до другой, т.е. условно принимаем,
что такт происходит за один ход поршня.

Двигатели,
в которых рабочий цикл совершается за
четыре хода (такта) поршня или за два
оборота коленчатого вала, называют
четырехтактным.
Двигатели, в которых рабочий цикл
совершается за два хода поршня, или за
один оборот коленчатого вала, считают
двухтактными.

Двухтактный двигатель – особенности работы

Если рассматривать двухтактный двигатель, следует отметить, что газовый топливный обмен совершается при нахождении поршня возле нижней предельной точки (мертвой), несколько не доходя до нее. Отработанные газы начинают удаляться из цилиндра при изменении их объема за небольшой промежуток времени. Очистка цилиндра в классическом двухтактном двигателе производится с помощью продувки воздуха, поступающего через компрессор.

Во время продувки воздух частично удаляется, а выпуск отработанных газов производится с помощью выпускных окон до того, как они будут закрыты поршнем. После этого наступает начало процесса сжатия, протекающего, как и в обычном четырехтактном двигателе. При движении поршня снизу вверх происходит перекрытие продувочных окон, после чего воздух из компрессора в цилиндр уже не подается.

Такт — сжатие

Такт сжатия ( рис. 1 6) происходит при движении поршня от н.м.т. к в.м.т. При такте сжатия оба клапана закрыты. Рабочая смесь сжимается поршнем и незадолго до в.м.т. поджигается электрической искрой с некоторым опережением. Опережение зажигания необходимо для того, чтобы основная масса топливного заряда успела сгореть до достижения в.м.т., а догорание происходило при незначительном повороте коленчатого вала в такте расширения. Давление газов в цилиндре автомобильного двигателя в конце такта сжатия составляет 6 — 12 кгс / см2 ( 0 6 — 1 2 МН / м2), температура 150 — 350 С.

Индикаторная диаграмма четырехтактного двигателя.

Такт сжатия протекает при закрытых впускных и выпускных клапанах. Поршень движется от нижней к верхней мертвой точке. При этом происходит подготовка топлива к сгоранию. Давление в конце такта сжатия достигает 4 — 12 бар у карбюраторных двигателей и 30 — 40 бар у дизелей, температура соответственно 650 — 700 и 800 — 900 К.

Такт сжатия подготовляет смесь для более эффективного сгорания. При повышении давления будет лучше теплообмен между частицами топлива, что положительно сказывается на процессе сгорания.

Индикаторная диаграмма четырехтактного двигателя.

Такт сжатия протекает при закрытых впускных и выпускных клапанах. Поршень движется от нижней к верхней мертвой точке. При этом происходит подготовка топлива к сгоранию. Давление в конце такта сжатия достигает 4 — 12 бар у карбюраторных двигателей и 30 — 40 бар у дизелей, температура соответственно 650 — 700 и 800 — 900 К.

В такте сжатия рабочее Давление сжимает Донышко манжеты и приводит к расширению ее до диаметра цилиндра. При обратном движении поршня и отсутствии давления Донышко все же остается плотно зажатым кольцами и не может вернуться в исходное состояние. Внутреннее нажимное кольцо должно обеспечивать радиальный зазор, необходимый при набухании манжеты. Для кожаных, тканевых и однородных манжет зазор равен одной трети толщины нажимного кольца.

Рабочий процесс четырехтактного карбюраторного двигателя.

При такте сжатия ( рис. 86, б) происходит сжатие поступившего в цилиндр воздуха. В конце такта сжатия давление в цилиндре возрастает до 38 — 43 кГ / см2, а температура воздуха повышается до 620 — 680 С. В этот момент в цилиндр через форсунку / при помощи топливного насоса 2 под давлением 150 кГ / см2 впрыскивается распыленное дизельное топливо.

При такте сжатия внутри цилиндра сжимается воздух. Благодаря высокой степени сжатия давление воздуха повышается до 30 — 40 кг / см2, а температура до 500 и выше. В конце сжатия осуществляется впрыск в цилиндр через форсунку мелко распыленного топлива, которое под действием высокой температуры воздуха воспламеняется и начинает гореть.

Во время такта сжатия ( рис. 34 — 2, б; впускной и выпускной клапаны закрыты, поршень движется от н.м.т. к в.м.т.) горючая смесь сжимается и по мере уменьшения ее объема давление и температура в цилиндре повышаются. Частицы топлива и воздуха при сжатии приходят в тесное соприкосновение и происходит подготовка топлива к сгоранию. Давление конца сжатия находится в пределах 500 — 700 кн / м2, температура достигает 250 — 300 С.

Диаграмма рабочего цикла карбюраторного двигателя внутреннего сгорания.

В конце такта сжатия происходит воспламенение горючей смеси электрической искрой. Быстрое сгорание паров бензина сопровождается передачей рабочему телу — воздуху — количества тепла Qlt резким возрастанием температуры и давления воздуха и продуктов сгорания. За короткое время горения смеси поршень практически не изменяет своего положения в цилиндре, поэтому процесс нагревания газа в цилиндре можно считать изохорическим и изобразить его на диаграмме р — V участком ВС.

Схема насосного действия поршневых колец.

В конце такта сжатия давление в цилиндре сильно возрастает, маслосъемное действие компрессионных колец усиливается, и избыточное количество масла перемещается в сторону камеры сгорания. Если толщина масляной пленки велика, перед первым компрессионным кольцом образуется валик масла, который в момент остановки поршня у верхней мертвой точки силой инерции выбрасывается в зазор между цилиндром и головкой поршня. На количество масла, поступающего в камеру сгорания через ЦП Г, определенное влияние оказывает насосное действие поршневых колец ( рис. 10.1), но оно играет существенную роль только при высокой частоте вращения коленчатого вала, когда силы инерции достаточны для отрыва компрессионных колец от нижних торцов канавок и их перемещения к верхним торцам. В дизельных двигателях при высоких давлениях сжатия и сгорания насосное действие проявляется в меньшей степени.

Четвертый такт выпуск.

Поршень перемешается oт НМТ к ВМТ Через открытый выпускной клапан отработавшие газы выталкиваются из цилиндра в выпускной трубопровод и в окружаюшую среду, В конце выпуска давление в цилиндре составляет 0,105—0,12 МПа, а температура — 85O-120O К.

Степень очистки цилиндра от отработавших газов характеризуется коэффициентом остаточных газов (отношение массы остаточных газов к массе свежего заряда). Для современных ДВС коэффициент остаточных газов составляет 0,08—0,2, он возрастает при увеличении частоты вращения коленчатого вала.

Рабочий цикл двигателя заканчивается четвертым тактом — выпуском. При дальнейшем движении поршня цикл повторяется в той же последовательности. Коленчатый вал в течение четырех тактов поворачивается на 720°, т. с. совершает два оборота. В двигателях, работающих по четырехтактному циклу, полезная работа совершается только в период такта расширения (рабочего хода), когда поршень перемещается пол действием расширяющихся газов, поворачивая коленчатый вал на 180е Остальные три такта являются подготовительными и выполняются при поворачивании коленчатого вата на 540° за счет инерции маховика И работы других цилиндров (в многоцилиндровых двигателях).

Работа двигателя, рабочий цикл

Бензин и дизель – почему они не взаимозаменяемы

Достаточно часто даже владельцы машин с большим опытом задаются вопросом относительно природы и особенностей различных видов топлива.

Учитывая, что постоянно приходится сталкиваться с наглядной разницей цены на заправках относительно бензина различных марок и дизельного топлива, у некоторых возникает вопрос относительно возможности заправки традиционного бензинового двигателя дизелем.

Разумеется, ничего хорошего из этого не получится, об этом знают практически все. Однако насколько всё же являются подобными бензин и дизельное топливо?Казалось бы, оба они производятся из нефти, в народе бытует мнение, что основной разницей является только степень очистки.

Тем не менее, практика говорит, что это не так. Чтобы разобраться в особенностях того и другого состава рассмотрим их поближе. Стоит отметить, что для каждого из этих видов топлива предусмотрен свой двигатель, который не имеет ничего общего с конструкцией другого.

Точно также дизельные двигатели совершенно не приспособлены для разжигания бензинового топлива, что полностью исключает заливание соответствующего образца.

Если говорить о химии тех или иных веществ, то все они производятся из сырой нефти. Стоит отметить, что в ней содержится огромное количество самых разнообразных углеводородов. Здесь и газы и жидкости.

Разумеется, чем короче полимерная цепочка определённого углеводорода, тем он более летучий, тем легче воспламеняется и испаряется. В этом отношении бензин стоит сразу же за сверхлегкими цепочками жидкостей, которые используются обычно для растворителей.

Стоит отметить, что у бензина температура кипения ниже, чем у воды, вследствие чего он достаточно быстро и легко испаряется с асфальта в случае пролива.

Тем не менее, существует определенная особенность дизельного топлива, которая лежит в основе использования его в двигателях. При достаточно сильном сжатии в соответствующей температуре, распыленный в горячем воздухе дизель способен воспламеняться сам по себе.

В данном случае это существенная разница с более легкой бензиновой основой, которая хоть и легко испаряется, всё же требует инициализирующей искры для воспламенения с воздухом. Именно этот принцип лежит в основе существенной разницы между конструкцией бензинового и дизельного топлива. Дизельный двигатель в принципе не содержит воспламенительных элементов.

Ключевым аспектом его является система для нагнетания потока воздуха под чрезвычайно мощным давлением. В результате этого атмосферный воздух разогревается вот до 800 – 900 градусов по Цельсию, что провоцирует взрыв и детонацию дизельной дисперсии в камере сгорания.

Ключевым элементом любого дизельного двигателя являются форсунки современной конструкции. Чрезвычайно малые каналы впрыска, собственно, и обеспечивают создание колоссального давления и температуры на ограниченном объеме.

Коэффициент полезного действия в силу высокой степени сжатия у дизельного двигателя даже несколько выше, чем у бензиновых вариантов.

История создания

Основная статья: История создания двигателей внутреннего сгорания

Тепловые машины (в основном, паровые) с момента появления отличались большими габаритами и массой, обусловленными применением внешнего сгорания (требовались котлы, конденсаторы, испарители, теплообменники, тендеры, насосы, водяные резервуары и др.), в то же время основная (функциональная) часть паровой машины (поршень и цилиндр) сравнительно невелика. Поэтому мысль изобретателей всё время возвращалась к возможности совмещения топлива с рабочим телом двигателя, позволившего впоследствии значительно уменьшить габариты и вес, интенсифицировать процессы впуска и выпуска рабочего тела. Особенно важны эти отличия на транспорте.

Газотурбинный ДВС

В создание различных ДВС внесли наибольший вклад такие инженеры как Джон Барбер (изобретение газовой турбины в 1791), Роберт Стрит (патент на двигатель на жидком топливе, 1794 год), Филипп Лебон (открытие светильного газа в 1799, первый газовый двигатель в 1801), Франсуа Исаак де Риваз (первый поршневой двигатель, 1807), Жан Этьен Ленуар (газовый двигатель Ленуара, 1860), Николаус Отто (двигатель с искровым зажиганием и сжатием смеси в 1861 году, четырёхтактный двигатель в 1876-м), Рудольф Дизель (двигатель Дизеля на угольной пыли, 1897), Готлиб Даймлер и Вильгельм Майбах, Огнеслав Степанович Костович (бензиновый мотор с карбюратором, 1880-е), Густав Васильевич Тринклер (дизельные двигатели на жидком топливе, 1899), Раймонд Александрович Корейво, Фридрих Артурович Цандер, Вернер фон Браун (реактивные и турбореактивные двигатели, начиная с 1930-х и заканчивая Лунной программой). Таким образом, ДВС развивались с отставанием от паровых машин (так, паровой насос для откачки воды был изобретён Томасом Севери в 1698 году), обусловленным отсутствием подходящего горючего, материалов и технологий. Сама идея ДВС была предложена Христианом Гюйгенсом ещё в 1678 году, в качестве топлива нидерландский учёный предлагал использовать порох. Англичанин Этьен Барбер пытался использовать для этого смесь воздуха с газом, полученным при нагреве древесины.
Появление целой плеяды разнообразных мощных и лёгких двигателей позволило создать новые, не существовавшие ранее виды транспорта (винтовой и реактивный самолёты, вертолёт, ракету, космический корабль, газотурбоход, судно на воздушной подушке), улучшить экономичность и экологичность корабельных силовых установок и локомотивов. Моторизация привела также к ускорению темпа жизни людей, возникновению целой автомобильной культуры (США); в военном деле дала возможность создать необычайно разрушительные машины смерти (танк, истребитель, бомбардировщик, ракеты с обычной и ядерной боеголовкой, подводную лодку с торпедами и другие).

Роторный ДВС

Устройство мотора

Прежде, чем разбираться с принципом работы, стоит сначала понять, как устроен силовой агрегат и что входит в его конструкцию. Так как поршневые считаются наиболее востребованными, рассматриваться будет именно такое устройство. К основным деталям следует отнести:

  1. Цилиндры, образующие отдельный блок
  2. Головку блока с ГРМ
  3. Кривошипно-шатунный механизм

Последний приводит в движение коленчатый вал, заставляя его вращаться. Механизм передает валу энергию, получаемую от двигающегося поршня, который в несколько тактов меняет свое положение. Движение поршня регулирует энергия тепла, возникающая в результате горения топлива.

Невозможно представить и организовать движение силового агрегата без установленных в нем механизмов. Так, например, ГРМ меняет положение клапанов, за счет чего удается обеспечить регулярную подачу топлива, впуская и выпуская определенные составы. Система поступления новых газов и выхода отработавших налажена.

  • зажигания, основная роль которой заключается в воспламенении топлива,
  • содержащего также воздух;
  • впускная, регулирующая своевременную подачу воздуха внутрь цилиндра;
  • топливная, благодаря которой удается обеспечить подачу топлива для сгорания и дальнейшей работы транспорта;
  • система смазки, снижающая износ трущихся деталей конструкции во время их работы;
  • выхлопная, посредством действия которой удается удалить отработавшие газы, в результате чего снижается их токсичность.

Также работает система охлаждения, регулирующая температуру внутри агрегата и следящая за тем, чтобы она была оптимальной.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector