Типичные неисправности автомобиля
Содержание:
- Впуск
- Камера сгорания топливной смеси
- Преимущества четырёхтактных двигателей:
- В чем заключаются главные отличия?
- Применение
- Применение
- Порядок работы
- Такт рабочего хода — двухтактный двигатель
- Мощность и потребление топлива
- Четвертый такт — выпуск.
- Четырехтактные двигатели внутреннего сгорания: история создания и принцип действия
- Управление карбюратором
- КАК РАБОТАЕТ ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ
- История
- Применение
- Четырехтактники на мотоциклах
- Виды моторов
Впуск
Итак, в камере сгорания силового агрегата циклы преобразований энергии начинаются с реакции горения топливной смеси. При этом поршень находится в самой верхней своей точке (положение ВМТ), а затем движется вниз. В результате в камере сгорания двигателя возникает разрежение. Под его воздействием горючая жидкость всасывает топливо. Впускной клапан при этом находится в открытом положении, а выпускной закрыт.
Когда поршень начинает движение вниз, то над ним увеличивается объем. Это и вызывает разрежение. Оно составляет примерно 0,071-0,093 МПа. Таким образом, в камеру сгорания попадает бензин. В инжекторных двигателях топливо впрыскивается форсункой. После поступления смеси в цилиндр ее температура может составлять 75 до 125 градусов.
Смотреть галерею
То, как сильно цилиндр будет заполнен топливной смесью, определяют по коэффициентам заполнения. Для двигателей с карбюраторной системой питания данный показатель составит от 0,64 до 0,74. Чем выше значение коэффициента, тем более мощный мотор.
Камера сгорания топливной смеси
Разные модели дизельных двигателей отличаются между собой строением. Одной из немаловажных особенностей является конструкция камеры сгорания. Камера сгорания – пространство, где происходит непосредственно сгорание топлива.
Неразделенная камера расположена в самой конструкции поршня или над ним, топливо на такте впуска попадает в нее, где и воспламеняется при контакте с горячим воздухом. Это наиболее простой вариант, который, к тому же, снижает расход топлива, но сам двигатель при этом работает очень громко.
Другой вариант – разделенная камера, то есть камера, которая расположена не в цилиндре, а на входе к нему и связана с ними каналом. Топливо подается в камеру, где перемешивается с вихревым потоком воздуха, что лучше распределяет его капли по объему камеры сгорания и способствует полному его сгоранию. Такой вариант подходит для небольших установок и легковых автомобилей, но он значительно увеличивает расход топлива.
Исходя из конструкции поршня и камеры сгорания, различают разные способы смесеобразования в дизельных ДВС:
— объемное смесеобразование – самый простой вариант. Камера сгорания представляет собой пространство между поршнем, стенками и головкой цилиндров. Топливо впрыскивается под давлением через распылители форсунок
Здесь важно, чтобы капли топлива равномерно распределились по всему объему и тщательно перемешались с горячим воздухом, поэтому в камере сгорания должен быть организован вихреобразный поток топливного заряда, а само топливо должно подаваться под высоким давлением;
— объемно-пленочное смесеобразование используется в высокооборотных двигателях с небольшим диаметром цилиндров. Это как раз тот случай, когда камера сгорания частично размещена в конструкции поршня. В двигателях отечественного производства такие камеры имеют форму усеченного конуса. При впрыскивании заряда топливо попадает на поверхность камеры сгорания, образуя «пленку», после чего практически сразу испаряется. Вихревые потоки, образующиеся под воздействием перемещения поршня, дают возможность равномерно распределить капли топлива по всему объему;
— предкамерное смесеобразование предусматривает наличие предкамеры, расположенной в крышке цилиндров. Она соединяется с основной камерой сгорания небольшими каналами с диаметрами не более 1% от диаметра поршня. Объем предкамеры составляет до 30% общего объема камер. По форме она может быть овальной, цилиндрической или сферической;
— вихрекамерное смесеобразование происходит за счет вихревых потоков воздуха, что дает возможность максимально смешать топливный заряд с воздухом даже при невысоком давлении его подачи в камеру сгорания. Для такого смесеобразования необходима раздельная камера, состоящая из двух частей: вихревой и основной. На такте сжатия воздух из основной камеры вытесняется в вихревую, которая имеет сферическую или цилиндрическую форму. Поток воздуха создает вихревые движения, двигаясь по кругу, а в это время из форсунки под давлением до 12 МПа подается заряд топлива. Поскольку воздушная волна находится в движении, капли равномерно распределяются по всему ее объему.
Преимущества четырёхтактных двигателей:
В отличие от двухтактного двигателя, в котором смазка коленвала, подшипников коленвала, компрессионных колец, поршня, пальца поршня и цилиндра осуществляется благодаря добавлению масла в топливо; коленвал четырехтактного двигателя находится в масляной ванне. Благодаря этому нет необходимости смешивать бензин с маслом или доливать масло в специальный бачок. Достаточно залить чистый бензин в топливный бак и можно ехать, при этом отпадает необходимость покупки специального масла для 2-тактных двигателей.
Так же на зеркале поршня и стенках глушителя и выхлопной трубы образуется значительно меньше нагара. К тому же, в 2-тактном двигателе происходит выброс топливной смеси в выхлопную трубу, что объясняется его конструкцией.
В чем заключаются главные отличия?
Особенности функционирования требуют рассмотрения в первую очередь, чтобы сравнение было правильным:
- В дизельных движках топливовоздушная смесь формируется гораздо быстрее, если сравнивать с агрегатом, работающим на бензине. В цилиндрах таких двигателей сдавливается только воздух, температура которого соответствует примерно 900 градусам. Бензин подается отдельно в отделение для последующего сгорания. Мелкие фрагменты солярки испаряются в ускоренном режиме и соединяются с воздушной массой. Благодаря достаточно высокому температурному воздействию, образовавшаяся смесь легко воспламеняется без необходимости поджога при помощи искры. Такие моторы расходуют значительно меньше масла.
- Воздух и горючее в бензиновых движках комбинируется в специально разработанном спускном коллекторе, после чего топливо попадает в отсек для дальнейшего сжигания. Когда завершается такт сжатия, выполняется финальный этап образования топливовоздушного состава и ее последующее распространение по всем отсекам цилиндра. После сдавливания полученная смесь достигает температуры примерно 500 градусов, а затем выполняется процедура ее воспламенения с использованием свечи.
Применение
Четырёхтактные двигатели могут быть как бензиновыми, так и дизельными. Они находят самое широкое применение в качестве первичных двигателей на стационарных и транспортных энергоустановках.
Как правило, четырёхтактные двигатели используются в тех случаях, когда имеется возможность более или менее широко варьировать соотношение оборотов вала со снимаемой мощностью и крутящим моментом либо тогда, когда это соотношение не играет роли при работе машины. Например, двигатель, нагруженный электрогенератором, в принципе может иметь любую рабочую характеристику и согласуется с нагрузкой только по рабочему диапазону оборотов, которые в принципе могут быть любыми, приемлемыми для генератора. Использование промежуточных передач вообще делает четырёхтактный двигатель более адаптированным к нагрузкам в самых широких пределах. Они же являются более предпочтительными в тех случаях, когда установка длительное время работает вне установившегося режима — благодаря более совершенной газодинамике их работа в переходных режимах и режимах со снятием частичной мощности оказывается более устойчивой.
При работе на вал в заданном диапазоне оборотов, особенно тихоходный (гребной вал теплохода), предпочтительнее использование двухтактных двигателей, как имеющих более выгодные массово-мощностные характеристики на низких оборотах.
Применение
Четырёхтактные двигатели могут быть как бензиновыми, так и дизельными. Они находят самое широкое применение в качестве первичных двигателей на стационарных и транспортных энергоустановках.
Как правило, четырёхтактные двигатели используются в тех случаях, когда имеется возможность более или менее широко варьировать соотношение оборотов вала со снимаемой мощностью и крутящим моментом либо тогда, когда это соотношение не играет роли при работе машины. Например, двигатель, нагруженный электрогенератором, в принципе может иметь любую рабочую характеристику и согласуется с нагрузкой только по рабочему диапазону оборотов, которые в принципе могут быть любыми, приемлемыми для генератора. Использование промежуточных передач вообще делает четырёхтактный двигатель более адаптированным к нагрузкам в самых широких пределах. Они же являются более предпочтительными в тех случаях, когда установка длительное время работает вне установившегося режима — благодаря более совершенной газодинамике их работа в переходных режимах и режимах со снятием частичной мощности оказывается более устойчивой.
При работе на вал в заданном диапазоне оборотов, особенно тихоходный (гребной вал теплохода), предпочтительнее использование двухтактных двигателей, как имеющих более выгодные массово-мощностные характеристики на низких оборотах.
Порядок работы
Рабочий цикл четырёхтактного двигателя состоит из четырех тактов, каждый из которых представляет один ход поршня между мертвыми точками, при этом двигатель проходит следующие фазы:
- Впуск. Длится от 0 до 180° поворота кривошипа. При впуске поршень движется вниз от верхней мертвой точки, открыт впускной клапан. В цилиндре образуется разрежение, за счёт которого в него засасывается свежий заряд. При наличии нагнетателя смесь нагнетается в цилиндр под давлением.
- Такт сжатия. 180—360° поворота кривошипа. Поршень движется к ВМТ, при этом заряд сжимается поршнем до давления степени сжатия. За счёт сжатия достигается бо́льшая удельная мощность, чем могла бы быть у двигателя, работающего при атмосферном давлении (такого как двигатель Ленуара), за счёт того, что в небольшом объёме заключен весь заряд рабочей смеси. Кроме того, повышение степени сжатия позволяет увеличить КПД двигателя. В двигателях Отто любой конструкции сжимается горючая смесь, в дизелях — чистый воздух.
В конце такта сжатия происходит зажигание заряда в двигателях Отто или начало впрыска топлива в двигателях Дизеля.
- Рабочий ход 360—540° кривошипа — движение поршня в сторону нижней мёртвой точки под давлением горячих газов, передаваемого поршнем через шатун коленчатому валу. В двигателе Отто при этом происходит процесс изохорного расширения, в дизеле за счёт продолжающегося горения рабочей смеси подвод теплоты продолжается столько, сколько длится впрыск порции топлива. Поэтому сгорание в дизеле обеспечивает процесс, близкий к адиабатному, расширение происходит при одинаковом давлении.
- Выпуск. 540—720° поворота кривошипа — очистка цилиндра от отработавшей смеси. Выпускной клапан открыт, поршень движется в сторону верхней мёртвой точки, вытесняя выхлопные газы.
В реальных двигателях фазы газораспределения подбираются таким образом, чтобы учитывалась инерция газовых потоков и геометрия трактов впуска и выпуска. Как правило, начало впуска опережает ВМТ от 15 до 25°, конец впуска отстает примерно на столько же от НМТ, так как инерция потока газов обеспечивает лучшее заполнение цилиндра. Выхлопной клапан опережает НМТ рабочего хода на 40 — 60°, при этом давление сгоревших газов к НМТ падает и противодавление на поршень при выхлопе оказывается ниже, что повышает КПД. Закрытие выхлопного клапана также относится за ВМТ впуска для более полного удаления выхлопных газов.
Так как процесс горения и распространение фронта пламени в двигателях Отто требуют определенного времени, зависящего от режима работы двигателя, а максимальное давление из соображений геометрии кривошипно-шатунного механизма желательно иметь от 40 до 45° от ВМТ начала рабочего хода, зажигание осуществляется с опережением — от 2 — 8° на холостом ходу до 25 — 30° на режимах полной нагрузки.
Рабочий процесс дизельного двигателя отличается от описанного выше тем, что заряд в камере сгорания — чистый воздух, нагретый от сжатия до температуры воспламенения. За некоторое время до ВМТ, называемое временем инициации, в камеру сгорания начинает впрыскиваться жидкое топливо, распыленное до капель, каждая из которых подвергается инициации, то есть нагревается, испаряясь с поверхности, при испарении вокруг каждой из капель образуется и воспламеняется в горячем воздухе горючая смесь. Время инициации для каждого дизеля стабильно, зависит от особенностей конструкции и изменяется только с его изнашиванием, поэтому, в отличие от момента зажигания, момент впрыска в дизеле задается раз и навсегда при его конструировании и изготовлении. Так как смесь во всем объёме камеры сгорания в дизеле не образуется, а факел распыла форсунки занимает небольшой объём камеры, количество воздуха на каждый объём впрыснутого топлива должно быть избыточным, в противном случае процесс горения протекает не до конца, а выхлопные газы содержат большое количество недогоревшего углерода в виде сажи. Само горение длится столько времени, сколько длится впрыскивание данной конкретной порции топлива — от нескольких градусов после ВМТ на холостом ходу до 45-50° на режимах полной мощности. В мощных дизелях цилиндр может снабжаться несколькими форсунками.
Такт рабочего хода — двухтактный двигатель
При положении поршня около ВМТ сжатая рабочая смесь (1 на рис. 3) воспламеняется электрической искрой от свечи, после этого температура и давление смеси резко подскакивают. Под действием теплового расширения газов поршень двухтактного двигателя опускается к НМТ, в это время расширяющиеся газы сгоревшей смеси совершают полезную работу, толкая поршень. В это же время, опускаясь, пoршень создает высокое давление в кривошипной камере двухтактного двигателя (сжимая топливо-воздушную смесь в ней). Под действием давления клапан закрывается, не давая таким образом горючей смеси снова попасть во впускной коллектор и затем в карбюратор.
Когда поршень двухтактного двигателя дойдет до выпускного отверстия (1 на рис. 4), оно откроется и таким образом выйдут отработавшие газы в выпускную систему, давление в цилиндре понизится. При дальнейшем перемещении пoршень открывает продувочное (впускное) окно (1 на рис. 5) и горючая смесь, сжатая в кривошипной камере, поступает по каналу (2 на рис. 5), заполняя цилиндр и одновременно продувая его от остатков отработавших газов.
Далее цикл повторяется.
Немного о принципе зажигания. Так как топливной смеси нужно время для воспламенения, искра на свече появляется чуть раньше, чем пoршень достигает ВМТ. В идеале, чем быстрей движения поршня, тем раньше должно быть зажигание, потому что пoршень от момента искры быстрее доходит до ВМТ. Существуют механические и электронные устройства, меняющие угол зажигания в зависимости от оборотов двигателя.
У большинства скутеров до 2000 г.в. таких систем не было и угол опережения зажигания был установлен в расчете на оптимальные обороты. На некоторых же скутерах, например Honda DioZX AF35, установлен электронный коммутатор с динамическим опережением, то есть с опережением, зависящим от оборотов коленвала. С ним расширяющаяся горючая смесь совершает работу с максимальной полезной отдачей, и двигатель развивает больше мощности.
Преимущества и недостатки двух- и четырехтактных двигателей.
1. Меньший вес. Пример: 15 л.с. Двухтактный 36 кг четырёхтактный 45 кг.
2. Цена. Четырёхтактные двигатели сложнее в производстве, состоят из большего количества деталей, поэтому всегда дороже двухтактников.
3. Удобство перевозки двухтактника. Можно возить в любом положении, перед началом эксплуатации не требует отвешивания. Т.е. достал из багажника, поставил, завел, поехал.
4. Двухтактный двигатель живее реагирует на ручку газа. В четырёхтактных для совершения полного рабочего цикла поршню необходимо сделать 2 полных оборота в то время как в двухтактных только один. Частый вопрос: А правда ли что четырёхтактный 15 л.с. бежит быстрее чем такой же двухтактный? Ответ: нет не правда. У обоих этих двигателей мощность на валу 15 л.с. При прочих равных условиях почему один двигатель должен ехать быстрее второго?
1. Больший расход топлива. Напомним, примерный расход можно высчитать по формуле: для двухтактного 300 грамм на одну лошадинную силу, для четырёхтактного 200 грамм.
2. Шумность. На максимальных оборотах двухтактные двигатели как правило работают немного громче четырёхтактных.
3. Комфорт. Четырёхтактные двигатели не так вибрируют на малых оборотах (Касается только двухцилинровых двигателей. Одноцилиндровые и двух и четырёхтактные вибрируют примерно одинаково) и не так дымят как двухтактные.
4. Долговечность. Довольно спорный пункт. Бытует мнение, что двухтактные двигатели менее долговечны. С одной стороны это понятно, потому как масло для смазки трущихся элементов двигателя подается вместе с бензином, а значит работает не так эффективно в отличие от четырёхтактных двигателей где трущиеся элементы буквально плавают в масле. Но с другой стороны четырёхтактный двигатель по конструкции намного сложнее конкурента, состоит иззначительно большего числа деталей, а золотой принцип механики «Чем проще тем надежнее» еще никто не отменял.
Какой же двигатель выбрать?
Взвесь все за и против изложенные выше и сделай выбор самостоятельно. Однозначного ответа на вопрос: какой из двигателей лучше ты не найдешь ни в одной из книг ни на одном из форумов. И у тех и у других типов двигателей есть свои поклонники.
Мощность и потребление топлива
Для большинства водителей именно эти два параметра являются приоритетными, так как все хотят ездить быстро и экономно. Если говорить о мощности, то необходимо рассматривать две характеристики: крутящий момент и максимальную скорость. Дизельный агрегат имеет больший КПД из-за высокой степени сжатия топлива в 20 единиц, в то время как у бензинового мотора этот показатель лежит в пределах 10 единиц.
Из этого следует, что дизель имеет высокий крутящий момент, однако автомобили с бензиновыми моторами способны развивать большую скорость. Если вы предпочитаете скоростную езду по автобанам, тогда обязательно выбирайте бензин. На такой вопрос, как дизель или бензин, что лучше для внедорожника и кроссовера, ответ очевиден. Дизельные установки способны развивать достаточный крутящий момент, чтобы выбраться из любого бездорожья.
В плане экономии предпочтительнее дизель, так как стоимость топлива в среднем на 10-15 процентов ниже, а подобные моторы на 30-40 процентов экономичнее. Это преимущество покрывается дороговизной обслуживания дизельных моторов. По этой причине трудно однозначно сказать, что выгоднее, бензин или дизель. Автовладельцы должны ответить на этот вопрос для себя самостоятельно.
Четвертый такт — выпуск.
Поршень перемещается от НМТ к ВМТ. Через открытый выпускной клапан отработавшие газы выталкиваются через выпускной трубопровод в окружающую среду. В конце такта выпуска давление газов равно 0,11 -0,12 МПа, температура 850—1200. После этого рабочий цикл дизеля повторяется.В двухтактных двигателях время, отводимое на рабочий цикл, используется более полно, так как процессы выпуска и впуска совмещены по времени с процессами сжатия и рабочего хода. Рабочий цикл происходит за 360 градусов (один оборот коленчатого вала).
При движении поршня от ВМТ к НМТ одновременно происходят процессы расширения и выпуска с продувкой цилиндра, а при обратном движении от НМТ к ВМ1 впуск и сжатие. Изменения параметров цикла (давление и температура) соответствуют изменениям параметров четырехтактного двигателя.Сравнение рабочих циклов четырех- , двухтактных двигателей показывает, что при одинаковых размерах цилиндра и частоте вращения коленчатого вала мощность двухтактных двигателей выше в 1.5—1,7 раза. Он проще по конструкции и компактнее.К недостаткам двухтактного двигателя следует отнести ограниченное время газообмена, что ухудшает очистку цилиндра от отработавших газов, увеличивает потери части свежею заряда, снижает экономичность.
Четырехтактные двигатели внутреннего сгорания: история создания и принцип действия
В 1876 году немецкий инженер Николаус Отто изобрел и запатентовал первый четырехтактный двигатель внутреннего сгорания.
Конструкции четырехтактных дизельных и бензиновых двигателей очень похожи. В обоих случаях смесь топлива и воздуха подается в цилиндр, снабженный поршнем. Цилиндров может быть от 4 до 8 и даже более. Они работают последовательно, чтобы поддерживать постоянную мощность двигателя. Цикл работы каждого цилиндра состоит из 4 тактов — движения поршня.
Цикл начинается с 1 такта — впуска. Открывается впускной клапан, под действием коленчатого вала поршень двигается вниз, засасывая в цилиндр топливо и воздух.
Затем впускной клапан закрывается, и поршень толкаемый кривошипом, возвращается в цилиндр, сжимая топливо-воздушную смесь и тем самым разогревая ее. Этот 2 такт называется сжатием. В бензиновых двигателях в этот момент смесь воспламеняется свечой зажигания. При сгорании смесь расширяется. Происходит 3 такт — рабочий ход. Давление газов заставляет поршень двигаться вниз и вращать коленчатый вал.
В конце рабочего хода открывается впускной клапан, и начинается выход отработанных газов. Этот 4 такт называется выпуском. В это же время коленчатый вал толкает поршень обратно вверх, вытесняя из цилиндра оставшиеся газы. Когда процесс заканчивается, начинается новый 4-тактный цикл.
Схема работы четырехтактного двигателя внутреннего сгорания
Далее на инфографике изображена принципиальная схема всех четырех тактов.
1. Впуск: поршень идет вниз, засасывая воздух и топливо в цилиндр.
2. Сжатие: поршень поднимается и сжимает топливную смесь.
3. Рабочий ход: искра воспламеняет топливно-воздушную смесь и газы толкают поршень вниз.
4. Выпуск: поршень поднимается и цилиндр и выталкивает отработанные газы.
Конструкция двигателя Отто была усовершенствована и доработана другим немецким инженером Готлибом Даймлером (1834 — 1900). Даймлер запатентовал более мощную и быстроходную модель двигателя в 1887 г. Обычный двигатель внутреннего сгорания может иметь 8 или даже дольше цилиндров. В каждом цилиндре поршень после поджигания топливно-воздушной смеси движется вниз и вращает коленчатый вал. Специальные клапаны осуществляют впуск топливно-воздушной смеси и выпуск отработанных газов.
Четырехтактные двигатели применяются в основном в автомобилестроении. Цикл их работы состоит из 4 тактов: впуск, сжатие, рабочий ход и выпуск. Только такт рабочего хода заставляет коленчатый вал вращаться. В современных автомобильных двигателях имеется сразу несколько цилиндров. Поршни, находящиеся в этих цилиндрах, последовательно выполняют каждый из 4 тактов рабочего цикла.
Управление карбюратором
Как правило, действиями карбюратора руководит водитель автомобиля. На отдельных моделях карбюраторов применялись вспомогательные системы, которые немного автоматизировали управление карбюратором.
Для того чтобы управлять дроссельной заслонкой наиболее часто пользуются педалью газа, которая обуславливает ее подвижность при содействии системы тяг либо тросового привода. Тяга, как правило, лучше, однако механизм привода куда сложнее и сдерживает способность механизма по компоновке подкапотной площади. Привод тягами был популярен до 1970 года, потом стали чаще использоваться тросики из металла.
На старых машинах чаще предполагалась двойная система привода дроссельной заслонки карбюратора: вручную рычагом либо от ноги, при помощи педали. Если надавливать на педаль, то рычаг не двигается, а если перемещать рычаг, то педаль опускается.
Последующее открытие дросселя можно совершать педалью. Когда педаль опускается — дроссель остается в таком же положении, в котором зафиксировался при управлении рукой. К примеру, на «Волге» ГАЗ-21 на панели приборов был размещен рычаг для управления рукой, при его движении можно достичь постоянного функционирования холодного двигателя без действия воздушной заслонки либо применять «постоянный газ». На грузовиках «постоянный газ» применялся для облегчения передвижения задним ходом.
Воздушная заслонка может быть оснащена механическим либо автоматическим приводом. Если привод механический, то водитель закрывает ее при участии рычага. Автоматический привод очень популярен в других странах, а в России не «прижился» из-за своей ненадежности и недолгим сроком службы.
КАК РАБОТАЕТ ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ
В данном разделе рассматривается принцип работы двигателя внутреннего сгорания на примере одноцилиндрового бензинового мотора.
Главная часть двигателя внутреннего сгорания — это цилиндр с внутренней зеркальной поверхностью. Сверху на цилиндре установлена головка, которая является отдельной деталью и при необходимости снимается, например чтобы получить доступ к двигателю для проведения ремонтных работ (рис. 1.2).
Рис. 1.2. Двигатель со снятой головкой блока цилиндров.
Внутри цилиндра находится поршень. Внешне он напоминает обычный стакан, который перевернут вверх дном (именно дно поршня является его рабочей поверхностью). В процессе работы двигателя поршень внутри цилиндра перемещается вертикально вверх- вниз с высокой интенсивностью.
Снаружи по окружности поршня в отдельных канавках расположены поршневые кольца. Поршень прилегает к внутренней поверхности цилиндра неплотно. Поршневые кольца, во-первых, препятствуют попаданию вниз газа, образующегося при работе двигателя, во- вторых, не пропускают моторное масло в камеру сгорания, которая находится над поршнем и расположена над верхней мертвой точкой (о том, что это такое, рассказывается далее).
Поршень закреплен на шатуне с помощью специальной детали, которая называется поршневым пальцем. В свою очередь, шатун закреплен на коленчатом валу двигателя, а точнее — на кривошипе коленчатого вала (рис. 1.3). При сгорании рабочей смеси образующиеся газы оказывают сильное давление на поршень, который начинает двигаться вниз и через шатун передает свою энергию на коленчатый вал, что в результате вынуждает его вращаться.
Рис. 1.3. Поршень с шатуном.
На конце коленчатого вала имеется тяжелый металлический диск с зубьями, который называется маховиком. Основная его задача — обеспечить вращение коленчатого вала по инерции, что необходимо для подготовительных тактов рабочего цикла (о том, что такое «такты» и «рабочий цикл», будет рассказано далее).
Горючая смесь поступает в камеру сгорания через впускной клапан, а после сгорания продукты горения, которые представляют собой выхлопные газы, выходят из камеры сгорания через выпускной клапан. Оба клапана открываются в тот момент, когда их толкает соответствующий кулачок распределительного вала. Как только кулачок отходит назад (это происходит очень быстро, так как распределительный вал вращается с высокой скоростью), клапаны вновь плотно закрываются: их возвращают в исходное положение мощные пружины.
Примечание.
Распределительный вал двигателя приводится в действие коленчатым валом.
Свеча вкручивается непосредственно в головку блока цилиндров: для этого специально предназначено отверстие с резьбой. Свеча является источником искры, которая проскакивает между ее электродами, от нее в камере сгорания воспламеняется рабочая смесь. На каждый цилиндр двигателя приходится одна свеча (следовательно, у четырехцилиндрового двигателя имеется четыре свечи, у восьми-цилиндрового — восемь и т. д.).
При движении вверх-вниз поршень поочередно достигает двух крайних положений — верхнего и нижнего: в них он максимально удален от центральной оси коленчатого вала. Верхнее крайнее положение поршня называется верхней мертвой точкой, а нижнее — нижней мертвой точкой (соответственно ВМТ и НМТ). Расстояние между ВМТ и НМТ называется ходом поршня.
Пространство, которое остается над поршнем при его нахождении в ВМТ, называется камерой сгорания. Именно здесь воспламеняется и сгорает рабочая смесь. При этом возникает своеобразный «мини-взрыв», который сопровождается резким и сильным повышением давления, под воздействием которого поршень начинает двигаться вниз. Как раз в этот момент тепловая энергия превращается в механическую. При вертикальном движении вниз поршень через шатун толкает коленчатый вал, заставляя его вращаться. Образовавшийся крутящий момент передается на ведущие колеса автомобиля, которые и приводят машину в движение.
Объем в промежутке между ВМТ и НМТ называется рабочим объемом цилиндра. Если суммировать объем камеры сгорания (как указывалось, так называется пространство над ВМТ) и рабочий объем цилиндра, получится полный объем цилиндра. Сумма полных объемов всех цилиндров называется рабочим объемом двигателя.
По такому принципу работает двигатель внутреннего сгорания современного автомобиля. Далее рассмотрено, что представляет собой рабочий цикл двигателя внутреннего сгорания.
История
Цикл Отто
Идеализированный цикл Отто, показанный в координатах давление (Р) и объём (V): такт впуска(A) , представляющий собой изобарическое расширение; за ним следует такт сжатия (B) , представляющий собой адиабатический процесс. Далее следуют сжигание топлива, которое является изохорическим процессом, и адиабатическое расширение, характеризующие такт рабочего хода (C) . Цикл завершается изохорическим процессом и изобарическим сжатием, характеризующими такт выпуска (D) . TDC — верхняя мёртвая точка; BDC — нижняя мёртвая точка
Четырёхтактный двигатель впервые был запатентован Алфоном де Роше (англ.) в 1861 году. До этого около 1854—1857 годов два итальянца (Евгенио Барсанти и Феличе Матоцци) изобрели двигатель, который, по имеющейся информации, мог быть очень похож на четырёхтактный двигатель, однако тот патент был утерян.
Первым человеком, построившим первый практически используемый четырёхтактный двигатель, был немецкий инженер Николаус Отто. Поэтому четырёхтактный цикл известен как цикл Отто, а четырёхтактный двигатель, использующий свечи зажигания, называется двигателем Отто.
Идеальный цикл Отто состоит из адиабатического сжатия, сообщения теплоты при постоянном объёме, адиабатического расширения и отдачи теплоты при постоянном объёме. В практическом четырёхтактном цикле Отто имеются также изобарическое сжатие (выхлоп) и изобарическое расширение (впуск), которые обычно не рассматриваются, так как в идеализированном процессе они не играют роли ни в сообщении рабочему газу теплоты, ни в совершении газом работы.
Это видеоролик о работе двигателя Отто. (2 мин 16 сек, 320×240, 340 кбит/с)
Применение
Четырёхтактные двигатели могут быть как бензиновыми, так и дизельными. Они находят самое широкое применение в качестве первичных двигателей на стационарных и транспортных энергоустановках.
Как правило, четырёхтактные двигатели используются в тех случаях, когда имеется возможность более или менее широко варьировать соотношение оборотов вала со снимаемой мощностью и крутящим моментом либо тогда, когда это соотношение не играет роли при работе машины. Например, двигатель, нагруженный электрогенератором, в принципе может иметь любую рабочую характеристику и согласуется с нагрузкой только по рабочему диапазону оборотов, которые в принципе могут быть любыми, приемлемыми для генератора. Использование промежуточных передач вообще делает четырёхтактный двигатель более адаптированным к нагрузкам в самых широких пределах. Они же являются более предпочтительными в тех случаях, когда установка длительное время работает вне установившегося режима — благодаря более совершенной газодинамике их работа в переходных режимах и режимах со снятием частичной мощности оказывается более устойчивой.
При работе на вал в заданном диапазоне оборотов, особенно тихоходный (гребной вал теплохода), предпочтительнее использование двухтактных двигателей, как имеющих более выгодные массово-мощностные характеристики на низких оборотах.
Четырехтактники на мотоциклах
Да, эти моторы очень популярны среди производителей хороших, серьезных мотоциклов. Основное отличие – это дизайн. Если в автомобилях двигатель спрятан под капотом и дизайн его особо не разрабатывали, то в мире мотоциклов внешний вид силового агрегата имеет серьезное значение.
Вот уже более 15 лет в моде двухцилиндровый четырехтактный двигатель мотоцикла, представленный сегодня множеством моделей с самым разным объемом. Отличить такие двигатели можно по характерному звуку.
Однако среди мотоциклистов особой популярностью пользуются рядные четырехцилиндровые агрегаты. Эти моторы лишь немного опережают автомобильные ДВС. К примеру, схема на четырех клапанах лишь недавно получила признание в строительстве автомобилей. А на мотоциклах она использовалась еще с 70-х.
Для мотоцикла четырехтактник является более актуальным. Так, эти ДВС более экономичны, эффективны, экологичны, чем двухтактные агрегаты. Это – преимущества данных двигателей на мотоциклах. Также двигатели для мотоциклов сделаны таким образом, чтобы работать на высоких оборотах. Максимальная мощность выдается на оборотах до 14-16 тысяч на современных моделях.
Виды моторов
Существует три вида двигателей, встречаемых в транспортных средствах:
- поршневой
- роторно-поршневой
- газотурбинный
Большой популярностью пользуется первый вариант моторов. На некоторые модели автомобилей устанавливают так поршневые двигатели с четырьмя тактами. Вызвана такая популярность тем, что подобные агрегаты стоят дешевле, имеют небольшой вес и подходят для использования практически во всех машинах вне зависимости от производства.
Если говорить простыми словами, то двигатель автомобиля — это особый механизм, способный изменить энергию тепла, превратив ее в механическую энергию, благодаря чему удается обеспечить работу множества элементов конструкции автомобиля, а также его систем.
Изучить принцип действия мотора не составит труда. Например, поршневые ДВС делятся на двух- и четырехтактные агрегаты. Четырехтактными двигатели называют потому, что в одном рабочем цикле элемента поршень двигается четыре раза (такта). Подробнее о том, что представляют собой такты, написано далее.